
IEEE SYSTEMS JOURNAL, VOL. 17, NO. 2, JUNE 2023 2489

Deep Reinforcement Learning for Real-Time Energy
Management in Smart Home
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Chaojie Li , and Xianggang Liu

Abstract—Energy management in the smart home can help re-
duce residential energy costs by scheduling various energy con-
sumption activities. However, accurately modeling factors, such as
user behavior, renewable power generation, weather conditions,
and real-time electricity prices can be challenging, making the
design of an efficient energy management strategy difficult. This
article proposes a real-time energy management algorithm based
on deep reinforcement learning (DRL) for smart homes equipped
with rooftop photovoltaics, energy storage systems, and smart
appliances. The algorithm aims to minimize the energy cost while
ensuring user comfort. A policy network that can output both
discrete and continuous actions is designed to generate actions for
different types of devices in a smart home. The proposed DRL-
agent is trained using a proximal policy optimization approach
with historical data and is used for real-time scheduling. Finally,
simulations based on real-world data demonstrate the effectiveness
and robustness of the proposed algorithm.

Index Terms—Deep reinforcement learning (DRL), energy
storage system (ESS), home energy management, proximal policy
optimization (PPO).

NOMENCLATURE

Indices
t Index of time slot.
si Index of shiftable appliance.
ci Index of controllable appliance.
ni Index of nonshiftable appliance.
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P si
t Power consumption of si at time slot t (kW).
Isit Control variable of si at time slot t.
ρsit Task progress of appliance si at time slot t.
tsiini Initial time of appliance si’s scheduling window.
tsiend End time of appliance si’s scheduling window.
P ci
t Power consumption of ci at time slot t (kW).
T in
t Indoor air temperature at time slot t (◦C).
T out
t Outdoor air temperature at time slot t (◦C).
PHVAC
t Power consumption of HVAC at time slot t (kW).
Twa
t Water temperature in the EWH at time slot t (◦C).
P EWH
t Power consumption of the EWH at time slot t (kW).
Wt Hot water flow during time slot t (L).
SoCEV

t State of Charge of the EV at time slot t.
P EV
t Charging power of the EV at time slot t (kW).
tEV

ini Time EV arrives home.
tEV

end Time EV leaves home.
SoCESS

t State of charge of the ESS at time slot t.
P ESS
t Charging power of the ESS at time slot t (kW).
CSoC

t SoC-related degradation cost of the ESS at time
slot t ($).

ΔLDoD
t DoD of a particular discharging process at time slot t.

CDoD
t DoD-related degradation cost of the ESS at time slot

t ($).
CESS

t Degradation cost of ESS at time slot t.
Pni
t Power consumption of appliance ni at time slot t.
tni

ini Task starting time of appliance ni.
tni

end Task deadline of appliance ni.
P PV
t Output power of PV at time slot t.
it Solar irradiation at time slot t (kW/m2).
P g
t Exchange power between smart home and utility

grid (kW).
st State of the MDP at time step t.
at Action of the MDP at time step t.
rt Reward of the MDP at time step t.
θ Weights of the policy network.
ω Weights of the value network.

Constants
P si

rated Rated power of appliance si (kW).
Ksi Required time for appliance si to complete its task.
P ci

min Minimum power of appliance ci (kW).
P ci

max Maximum power of appliance ci (kW).
ηHVAC Thermal conversion efficiency of the HVAC.
A Mean thermal conductivity of house (kW/◦C).
ε Inertia factor of the HVAC.
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PHVAC
max Maximum power of the HVAC.
T in

set Set value of the indoor temperature (◦C).
ΔT in

set Threshold of the indoor temperature deviation (◦C).
α1 Thermal comfort conversion factor of HVAC ($).
V Water tank capacity of the EWH (L).
ρ Density of water (kg/m3).
cp Specific heat of water (kJ/(◦C · kg)).
G Thermal conductivity of the water tank (W/◦C).
Tco Temperature of cold water (◦C).
P EWH

max Maximum power of the EWH (kW).
Twa

set Set value of the water in the EWH (◦C).
ΔTwa

set Threshold of the water temperature deviation (◦C).
α2 Thermal comfort conversion factor of EWH ($).
ηEV

ch Charging efficiency of the EV.
EEV

max Battery capacity of the EV (kWh).
P EV

max Maximum charging power of the EV (kW).
SoCEV

max Maximum SoC of the EV.
α3 Range anxiety conversion factor ($/kWh2).
SoCEV

max Maximum SoC of the EV.
ηESS

ch Charging efficiency of the ESS.
ηESS

dis Discharging efficiency of the ESS.
EESS

max Battery capacity of the ESS (kWh).
P ESS

max Maximum charging power of the ESS (kW).
SoCESS

max Maximum SoC of the ESS.
SoCESS

min Minimum SoC of the ESS.
C0 Installation cost of battery in ESS ($).
Pni

rated Rated power of appliance ni.
ρpv Conversion efficiency of the PV panel.
Apv Surface area of roof PV (m2).
P g

max Maximum total power demand limitation (kW).

I. INTRODUCTION

SMART homes are usually equipped with an advanced au-
tomation system called a home energy management system

(HEMS), which can interact with the utility grid, monitor, and
schedule the smart appliances in the home. By applying HEMS,
smart homes can participate in demand response programs,
which increase the flexibility of the power grid. Moreover,
HEMS is enabled to reduce the household energy cost while
maintaining the satisfaction of the user’s comfort.

In early work, Paterakis et al. [1] developed a mixed-integer
linear optimization method to reduce the household energy cost
by scheduling smart home appliances a day ahead, but the com-
fort level of residents was not considered. Therefore, Althaher
et al. [2] proposed a mixed-integer nonlinear programming ap-
proach considering the comfort level of residents. However, the
randomness of energy consumption and electricity price was not
considered in [1] and [2]. Then, a stochastic model was adopted
in [3] and [4] to describe the uncertainties of electric vehicles
(EV) availability and an HEMS was proposed to solve the energy
management problem. In [5], a real-time energy management
method considering the uncertainty of photovoltaic (PV) output
and electricity price was proposed to minimize the energy cost
while considering the user’s comfort. In [6], the model predictive
control (MPC) strategy was adopted to minimize the energy cost
and reduce the EV battery degradation. It is worth noting that

the methods proposed in [1], [2], [3], [4], [5], and [6] require
a great deal of knowledge of systems and environments, which
are often difficult to acquire and, therefore, may be difficult to
apply in some cases.

On the other hand, machine learning is an effective method
that can model complex systems based on data without a lot
of prior knowledge. It has attracted many scholars to simplify
the modeling of HEMS by applying machine learning. Zhang
et al. [7] adopted an artificial neural network (ANN) to learn the
dynamics of heating, ventilating, and air conditioning (HVAC)
and proposed an optimal schedule algorithm for appliances in
smart home. But, it is also an offline optimization method,
which is hard to make a real-time decision. The real-time energy
management algorithm for the PV-storage system based on ap-
proximate dynamic programming (ADP) was proposed in [8], in
which, an ANN-based policy function was trained with historical
data. However, the state transition probability of the environment
is still essential in the ADP methods.

Without the state transition probability, model-free reinforce-
ment learning (RL) can train an agent to complete a certain
task by interacting with the environment. In each interaction,
the agent observes the state of the environment and generates
an action, which can achieve real-time scheduling for the appli-
ances in the smart home. Q-learning is a classical model-free
RL algorithm, which was adopted in different cases [9], [10],
[11], [12], [13] to reduce the energy cost of the smart home.
But, the Q-learning algorithm can only deal with the problem
that both the state and action are discrete and low-dimensional.
Therefore, it may be hard to deal with the complex environment
in smart home.

The deep RL (DRL) method has been proposed to solve
the problem that both state and action are continuous and
high-dimensional by integrating the perception of deep learning
and the decision-making ability of RL [14], [15]. For instance,
Mathew et al. [16] proposed a multiobjective residential energy
management algorithm based on Deep Q Network (DQN) [17]
to minimize the load profile deviation and energy cost. In [18],
an online optimal scheduling method based on DQN and de-
terministic policy gradient (DPG) was proposed to reduce the
residential energy cost, and it was found that DPG is more
effective than DQN. Furthermore, a real-time scheduling strat-
egy in a multienergy smart home based on deep DPG (DDPG)
was proposed in [19] but the action was discrete, and the
continuous version was proposed in [20]. The works in [16],
[18], [19], and [20] can only solve the problem that with either
discrete or continuous actions. However, some appliances in
a smart home require discrete control actions while the oth-
ers require continuous control actions, which need additional
studies.

Motivated by the above discussion, this article proposes a
real-time energy management approach based on proximal pol-
icy optimization (PPO) [21] algorithm to minimize the energy
cost while maintaining satisfaction of the user’s comfort in a
smart home. A policy network, which can generate both discrete
and continuous action, is adopted to schedule different types of
appliances. The proposed algorithm solves the energy manage-
ment problem in a smart home equipped with PV, energy storage
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system (ESS), and different types of smart appliances while
considering the uncertainty of user’s behavior and electricity
price. Compared with [22], the scheduling of ESS and PV is
further investigated. The charging/discharging of ESS enhances
the coupling of actions at each time slot and the uncertainty of
PV output results in a new disturbance, which increased the dif-
ficulty of residential energy management. Besides, a surrogate
objective and entropy of the policy are considered, which speeds
up the training process and improves the exploration ability
of the method. Finally, simulations based on real-world data
(e.g., solar irradiation, outdoor temperature, electricity price,
etc.) are adopted to estimate the effectiveness of the proposed
algorithm.

The main contributions of this article are as follows.
1) A model of the smart home incorporating PV, ESS, and

another three kinds of smart appliances is established, of
which the control variables included both discrete and
continuous types, in contrast to [16], [18], [19], and [20],
which considered either discrete or continuous only. Also,
the degradation cost of ESS is considered.

2) A Markov decision process (MDP) form of the energy
management problem in the smart home is formulated,
in which the user’s comfort is considered even if the fu-
ture information associated with the outdoor temperature,
irradiation, real-time electricity prices (RTP), and users’
behaviors is unknown.

3) A real-time energy management approach based on the
PPO [21] is proposed, which can be trained with historical
data and executed for the real-time scheduling. To achieve
the control of different types of appliances, the proposed
method incorporates a mixed output policy (MOP), which
can output both discrete and continuous actions compared
to the work in [19] and [20].

4) Simulations based on the real-world data are carried out.
The results show that the proposed method performs better
in reducing the energy cost of the smart home and is
more robust to handle the outdoor temperature deviation
than RL-based method DDPG [20] and trust region policy
optimization (TRPO) [22].

The remainder of this article is organized as follows.
Section II gives the smart home model for simulations. Sec-
tion III describes the MDP form of the HEMS problem. Sec-
tion IV explains the approach of HEMS based on the PPO algo-
rithm. Section V shows simulation results, and the conclusion
is given in Section VI.

II. MODEL OF SMART HOME

A smart home considered in this article is shown in Fig. 1,
including rooftop PV, ESS, and other appliances. There is a
bidirectional connection between the smart home and the utility
grid, which can exchange power in both directions. RTP with
inclining block rates (RTP-IBR) scheme [23] is adopted in the
utility grid. Appliances in a smart home are mainly divided
into shiftable, nonshiftable, and controllable appliances. HEMS
schedules in a set of time slots T = {1, 2, 3, . . . , Tend} and the

Fig. 1. Architecture of a smart home.

interval of each time slot isΔT . The rest of the models associated
with the smart home are given as follows.

A. Shiftable Appliances

Let S = {s1, s2, . . ., sj} denote the set of the shiftable appli-
ances in the smart home. For the appliance si ∈ S, P si

t denotes
the power consumption in the time slot t described as

P si
t = Isit · P si

rated ∀t ∈ T (1)

where P si
rated and Isit ∈ {0, 1} are rated power and control vari-

able of si, respectively; when Isit = 1, si is consuming power
at time slot t, otherwise si is dormant.

Assume that the shiftable appliances can be operated by the
HEMS within a scheduling window [tsiini, t

si
end] and cannot be

interrupted once they start working [24], Isit satisfies⎧⎪⎨
⎪⎩
Isit = 1, Isit−1 = 1, ρsit < Ksi ∀t ∈ T (2a)

1, ρsit = 0, tsiend − t = Ksi (2b)

0, t /∈ [tsiini, t
si
end] (2c)

where

ρsit =
t−1∑
i=t

si
ini

Isii , t ∈ [tsiini, t
si
end] (3)

denotes task progress of si; t
si
ini and tsiend are the initial time and the

end time of the scheduling window; Ksi ≤ tsiend − tsiini denotes
the time required by si to complete the task. Equation (2a) forces
si to work continually. Equation (2b) forces si to finish its task
within the scheduling window. Equation (2c) ensures si is turned
OFF outside the scheduling window.

B. Controllable Appliances

Let C = {c1, c2, . . ., cj} denotes the set of controllable ap-
pliances in smart home. For the controllable appliance ci ∈ C,
the power P ci

t can be adjusted continuously, satisfying

P ci
min ≤ P ci

t ≤ P ci
max ∀t ∈ T (4)

where P ci
min and P ci

max are the minimum and maximum values of
an adjustable range of power, respectively. We mainly focus on
HVAC, electrical water heater (EWH), EV, and ESS.
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1) HVAC: In the heating mode of HVAC, the thermodynamic
model [22] of the indoor temperature is

T in
t+1 = εT in

t + (1− ε)
(
T out
t + ηHVACPHVAC

t ΔT/A
)

(5a)

0 ≤ PHVAC
t ≤ PHVAC

max (5b)

where T in
t and T out

t are the indoor and outdoor temperatures,
respectively; ηHVAC is the thermal conversion efficiency; A is
the mean thermal conductivity of house; ε is a factor of inertia;
PHVAC
t is the power of HVAC; PHVAC

max is the maximum power of
HVAC.

To maintain T in
t within a comfortable range, consider the

following form of the thermal comfort cost:

CHVAC
t = α1 ·

(|T in
t − T in

set|/ΔT in
set

)2
(6)

whereα1 > 0 is the conversion coefficient of indoor temperature
comfort, in unit $; T in

set and ΔT in
set are the preset value and

maximum allowable deviation of the indoor temperature set by
the users, respectively.

2) EWH: According to the work in [25], the thermodynamic
of the water temperature in a tank of EWH is

Twa
t+1 = Twa

t · e−ΔT/τ +Q ·
(
1− e−ΔT/τ

)
(7a)

τ = ρcpV / (G+ ρcpWt) (7b)

Q =
(
GT in

t + ρcpWtTco + P EWH
t

)
/ (G+ ρcpWt) (7c)

0 ≤ P EWH
t ≤ P EWH

max (7d)

where Twa
t is the water temperature in a tank; V is the capacity

of the water tank and the unit is L; ρ and cp are density and
specific heat capacity of water, respectively; G is the thermal
conductivity of the water tank; Wt is the hot water flow; Tco

is the temperature of the replenishing cold water; P EWH
t and

P EWH
max are heating power and maximum heating power of EWH,

respectively.
Similar to HVAC, the thermal comfort cost is designed as

CEWH
t = α2 · (|Twa

t − Twa
set |/ΔTwa

set )
2 (8)

where α2 > 0 is a conversion coefficient of water temperature
comfort, in unit $; Twa

set and ΔTwa
set are the preset temperature and

maximum allowable deviation of the water temperature set by
the users.

3) EV: EV arrives home at time tEV
ini and leaves home at time

tEV
end every day. EV can charge during it is at home and should

be fully charged when leaving. The charging model of EV is
expressed as

SoCEV
t+1 = SoCEV

t + ηEV
ch · P EV

t ΔT/EEV
max (9a)

0 ≤ P EV
t ≤ min

(
P EV

max,

(
SoCEV

max − SoCt

) · EEV
max

ΔT · ηEV
ch

)

(9b)

where SoCEV
t is the state of charge (SoC) of EV; ηEV

ch denotes
the charging efficiency; EEV

max is a battery capacity of EV; P EV
t

and P EV
max are charging power and maximum charging power of

EV, respectively; SoCEV
max is maximum SoC of EV. Overcharge

of EV is avoided by (9b).

The user’s range anxiety is denoted by CEV
t and occurs when

EV is not well charged at the departure time

CEV
t =

{
α3

((
SoCEV

t − SoCEV
max

)
EEV

max

)2
, t = tEV

end
0, t �= tEV

end
(10)

where α3 is a range anxiety conversion factor in
unit $/kWh2.

4) ESS: ESS is controlled by HEMS to charge or discharge.
Let P ch

t > 0 and P dis
t < 0 denote the charging and discharging

powers of ESS, respectively. The SoC model of ESS can be
expressed as

SoCESS
t+1 = SoCESS

t + ηESS
ch · P ch

t ΔT/EESS
max

+ 1/ηESS
dis · P dis

t ΔT/EESS
max (11)

where SoCESS
t is the SoC of ESS; EESS

max is the battery capacity
of ESS; ηESS

ch and ηESS
dis denote the charging and discharging

efficiencies of ESS, respectively. Similar to EV, the charging
and discharging powers should satisfy

0 ≤ P ch
t ≤ min

(
P ESS

max ,

(
SoCESS

max − SoCESS
t

)
EESS

max

ΔT · ηESS
ch

)
(12a)

max

(
−P ESS

max ,

(
SoCESS

min − SoCESS
t

)
EESS

max η
ESS
dis

ΔT

)
≤ P dis

t ≤ 0

(12b)

where SoCESS
max and SoCESS

min are maximum and minimum SoCs of
ESS, respectively; P ESS

max is the maximum power of ESS.
LetP ESS

t denotes control variable of ESS. Then, charging and
discharging powers can be expressed as

[
P ch
t , P

dis
t

]
=

{[
P ESS
t , 0

]
, P ESS

max ≥ P ESS
t ≥ 0[

0, P ESS
t

]
,−P ESS

max ≤ P ESS
t < 0.

(13)

Note that the ESS is already installed in the smart home and the
economy of its investment is already guaranteed while improper
short-term scheduling operation may cause the rapid degradation
of the battery units in the ESS, resulting in the battery units
needing to be replaced before they reach the design service life.
To avoid that, the SoC-related degradation cost and the depth-
of-discharge (DoD)-related degradation cost for one discharging
cycle are considered. According to the work in [26], the SoC-
related degradation cost during a time slot is

CSoC
t = C0 · κ · SoCESS

t − ψ

Fmax · 15 · 365 · 24 · ΔT
60

(14)

where C0 is the cost of the battery units, in unit $, which is
predicted to dropping below $100/kWh by 2030 [27], [28]; κ
and ψ are linear regression factors in battery test data; Fmax

is the maximum capacity fade constant, usually is 20%. The
DoD-related degradation cost for one discharging cycle is

CDoD
t = C0 · ΔLDoD

t

f
(
ΔLDoD

t

)
ΔLDoD

t = −P ESS
t ·ΔT/ (ηESS

dis · EESS
max

)
, P ESS

t < 0 (15)
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where ΔLDoD
t is the difference of DoD before and after a

particular discharging process. f
(
ΔLDoD

t

)
is the fitting function

obtained from the battery discharge experiment [26]:

f
(
ΔLDoD

t

)
=

(
1.06 · (ΔLDoD

t

)4 − 2.80 · (ΔLDoD
t

)3
+ 2.66

· (ΔLDoD
t

)2 − 1.07 · (ΔLDoD
t

)
+ 0.17

)
· 105.

(16)

Therefore, the degradation cost of ESS can be expressed as

CESS
t = CSoC

t + CDoD
t . (17)

C. Nonshiftable Appliances

Nonshiftable appliances cannot be scheduled by HEMS. Let
N = {n1, n2, . . ., nj} denotes a set of nonshiftable appliances
in the smart home. For ni ∈ N , it starts working at tni

ini and
finishes its task at tni

end, which is associated with users’ behaviors.
The power of ni is

Pni
t =

{
Pni

rated, t ∈ [tni
ini , t

ni
end]

0, t /∈ [tni
ini , t

ni
end]

(18)

where Pni
rated and Pni

t denote the working power and the rated
power, respectively, of ni.

D. Photovoltaic

Let P PV
t denotes the output power of PV. P PV

t is correlated
with the environmental condition (e.g., solar irradiation), which
is uncontrollable. According to the work in [29], the estimation
of P PV

t is

P PV
t = ρpv ·Apv · it (19)

where ρpv is the conversion efficiency of PV panel per unit
area; Apv is the surface area of roof PV (in m2); it is the solar
irradiation (in kW/m2).

E. Power Balance Constraint

In each time slot, the power balance between smart home and
utility grid can be expressed as

P g
t + P PV

t =
∑
si∈S

P si
t +

∑
ci∈C

P ci
t +

∑
ni∈N

Pni
t (20)

where P g
t denotes the exchange power between smart home and

utility grid; P g
t > 0 indicates that HEMS purchases electricity

from the utility grid, on the contrary, sells electricity to utility
grid. The price of electricity sold by HEMS to utility grid is 0.9
times of the RTP Pt. The RTP-IBR price in time slot t is given

pricet =

⎧⎨
⎩
Pt, 0 ≤ P g

t ≤ P g
max

ξ · Pt, P g
max < P g

t

0.9 · Pt, P g
t < 0

(21)

where ξ is the IBR factor [23]; P g
max is the maximum power

limitation. Therefore, the energy cost of smart home in time slot
t ∈ T is

CE
t = P g

t · pricet ·ΔT. (22)

F. Objective Function of Energy Management

HEMS aims at minimizing the energy cost while ensuring
user comfort within a time period via regulating {Isit , P ci

t |si ∈
S, ci ∈ C}. Specifically, the objective function can be formu-
lated as

min

Tend∑
t=0

(
CE

t + CHVAC
t + CEWH

t + CEV
t + CESS

t

)
. (23)

III. MDP FORMULATION

This section converts the energy management problem to
an MDP(S,A, P, r), where, S,A, P, and r are the state space,
action space, state transition probability, and reward function of
the environment, respectively. In time slot t, an agent observes a
state st from St and selects an action at fromA. After executing
at in the environment, the state st is transformed to st+1 based
on P (st, at), and the agent receives a reward rt = r(st, at). In
this article, the state transition probability P remains unknown
because of the uncertainties of the electricity prices, outdoor
temperature, irradiations, and user’s behaviors in the future.
Therefore, we mainly focus on the formulations of the state st,
action at, and reward function rt.

A. State

The state of the environment, which is measurable, should
reflect the characteristic of the environment at time slot t.
Therefore, the state of the smart home is defined as follows.

1) Shiftable Appliances: Defining the state of the shiftable
appliance si ∈ S at time slot t as

ssit =

{
[ρsit , t

si
ini − t] , t ∈ [tsiini, t

si
end]

[0, 0], t /∈ [tsiini, t
si
end]

then, sSt = {ss1t , . . ., ssjt } denotes the state of all shiftable ap-
pliances in smart home.

2) Controllable Appliances: The states of each controllable
appliance are defined as follows.

a) HVAC: sHVAC
t = T in

t − T in
set ∀t ∈ T.

b) EWH: sEWH
t = Twa

t − Twa
set ∀t ∈ T.

c) EV: sEV
t =

{
SoCEV

t , t ∈ [tEV
ini , t

EV
end]

0, t /∈ [tEV
ini , t

EV
end].

d) ESS: sESS
t = SoCESS

t ∀t ∈ T.
Therefore, the state of all controllable appliances in smart

home is sCt = {sHVAC
t , sEWH

t , sEV
t , sESS

t }.
3) Nonshiftable Appliances: Define the state of nonshiftable

appliance ni as:

sni
t =

{
t− tni

ini , t ∈ [tni
ini , t

ni
end]

0, t /∈ [tni
ini , t

ni
end]

then, the state of all nonshiftable appliances is described as sNt =
{sn1

t , . . ., s
nj

t }.
Combining with other information (e.g., outdoor temperature,

RTP etc.), the state in time slot t ∈ T can be expressed as a vector,
namely

st =
{
sSt , s

C
t , s

N
t , P

PV
t ,Pt−Tend+1, . . .,Pt,
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Fig. 2. Architecture of the PPO-based energy management algorithm.

it−Tend+1, . . ., it, T
out
t−Tend+1, . . ., T

out
t

}
(24)

where Pt−Tend+1, . . .,Pt, it−Tend+1, . . ., it, T out
t−Tend+1, . . ., T

out
t

are electricity prices, solar irradiation, and outdoor temperature
in past Tend time steps, respectively.

B. Action

The action at generated by agent after observing st at the
beginning of time slot t. It can be expressed as

at =
{
Is1t , . . ., I

sj
t , P

c1
t , . . ., P

cj
t

}
(25)

where Is1t , . . ., I
sj
t are the control variables of shiftable ap-

pliances, Isjt , P
c1
t , . . ., P

cj
t are the power of the controllable

appliances.

C. Reward

The reward function should reflect the objective function (23).
Therefore, the reward is modeled as

rt = −CE
t − CHVAC

t − CEWH
t − CEV

t − CESS
t . (26)

The agent learns a policy by maximizing the discount cumulative
reward calculated by (26), which is equivalent to the objective
in Section II-F.

IV. ENERGY MANAGEMENT ALGORITHM

A. Algorithm Design

Based on PPO [21], an energy management algorithm is
proposed to solve the MDP problem formulated in Section III.
PPO is a model-free DRL approach based on the actor–critic
framework (AC), which can deal with the continuous actions
and states. Policy network (actor) πθ with weights θ and value
network (critic) vω with weightsω are adopted in the PPO agent,
which are for the approximations to policy function and state
value function in DRL, respectively, shown in Fig. 2. The input
ofπθ and vω is the state of the environment. A MOP is considered
to generate actions for different types of appliances. Besides, the
outputs of πθ serve as inputs to the MOP. The output of vω is
state value, which is for updating πθ.

1) PPO Agent: According the policy gradient method [30]
and gradient boosting algorithm, the weights θ of πθ is updated
by

θnew = θold + lr · ∇θoldJ(θold) (27)

where lr is the learning rate; J(θ) is the objective function of πθ;
∇θJ(θ) is policy gradient. Equation (27) shows that the policy
πθ is updated by maximizing the objective J(θ). PPO applied a
surrogate objective [21]

J(θ) = Et

(
LCLIP(θ)

)
LCLIP(θ) = min

(
kt(θ)Ât, clip(kt(θ), 1− ε, 1 + ε)Ât

)
kt(θ) = πθ(at|st)/πθold(at|st) (28)

where clip(. . .) is the truncation function that limits the deviation
of the old policy and new policy, in which, the lower bound is
1− ε, and the upper bound is 1 + ε; Ât is the advantage function,
which can reflect the effeteness of the policy. The generalized
advantage estimation method [31] is adopted to calculate Ât

Ât =

Tend−t∑
l=0

(γλ)lδVt+l

δVt = rt + γV π(st+1)− V π(st)

V π(st) = Eπ

[
Tend−t∑
l=0

γlrt+l

]
(29)

where λ ∈ [0, 1] is the estimating factor; δVt is the temporal
difference error; V π(st) is the state value function, which is
approximated by the value network vω; γ is the discount factor;
rt is the reward function. Both the policy network and the
value network are modeled by multilayer perceptrons (MLP).
Therefore, the loss function of vω can be defined as

Lv(ω) = E

[
vω(st)−

Tend−t∑
l=0

γlrt+l

]2
. (30)

To maximize the surrogate objective function J(θ), the loss
function of the πθ in the PPO method is defined as

Lπ(θ) = E
[−LCLIP(θ)− c1 ·Hπθ (st)

]
Hπθ (st) = Eat=πθ

[πθ(at|st) log πθ(at|st)] (31)

where c1 ∈ [0, 1] is the hyperparameter; Hπθ (st) is the entropy
of the policy. The exploration ability of the DRL algorithm can
be enhanced by maximizing the entropy. To improve the stability
of the training process, the parameters of the policy network and
the value network will be shared, and the shared parameters are
denoted as θ. Then, the overall loss function can be expressed
as

LTotal(θ) = Lπ
t (θ) + c2 · Lv(θ) (32)

where c2 ∈ [0, 1] is the hyperparameter. Therefore, the PPO
agent updates the policy by minimizing the overall lossLTotal(θ).
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2) Mixed Output Policy: The control variables of the
shiftable appliances and the controllable appliances in smart
home are discrete and continuous, respectively. Therefore, a
MOP is proposed, where the discrete actions are sampled from
multivariate Bernoulli distribution (MBD) and the continu-
ous actions are sampled from multivariate normal distribution
(MND), shown in Fig. 2. The output of policy network includes
two parts. The sigmoid function is used to output the p vector
pθ = [p1, p2, . . ., pj ]

T of MBD. The linear function is used to
output mean vector μθ = [μ1, μ2, . . ., μj ]

T and variance vector

σ2
θ = [σ2

1 , σ
2
2 , . . ., σ

2
j ]

T of MND. Furthermore, sampling dis-
crete actions of the shiftable appliances from

πθ
(
ISt |st

)
pθ

=

j∏
i=1

p
I
si
t

i (1− pi)
1−I

si
t (33)

where ISt = {Is1t , . . ., Isjt } is a control variable set of shiftable
appliances. The continuous actions of the controllable appli-
ances are sampled from

πθ
(
PC
t |st

)
μθ,σθ

=
1

(2π)j/2
∏j

i=1 σi
exp

(
−

j∑
i=1

(P ci
t − μi)

2

2σ2
i

)

(34)

where PC
t =

{
P c1
t , . . ., P

cj
t

}
is a control variable set of con-

trollable appliances. The MOP is expressed as

πθ(at|st) = πθ
(
ISt |st

)
p
· πθ
(
PC
t |st

)
μ,σ
. (35)

The action sampled from (35) are truncated according to the
action constraints of the different appliances, and finally ex-
ecuted in the smart home. Note that the proposed MOP can
generate both discrete and continuous actions, which provides
more accurate control for different kinds of appliances.

B. Multiprocess Data Sampling

In the training process, the data used for training are acquired
by interacting with the environment, the pseudocode of data
sampling is shown in Algorithm 1. Specifically, in each time
slot t, the agent observes the state st of the environment and
selects an action at, which is executed in the environment. Then,
the state of the environment is transformed by at and a reward
rt is returned from the environment. PPO is an on-policy RL
algorithm that uses the same policy for sampling and updating
in the training process, which limits training efficiency. In this
article, the multiprocess data sampling method is adopted in the
training process to accelerate data sampling speed, where the
pseudocode is shown in Algorithm 2. In each training episode,
the multiprocess pool technic is adopted to sample the data used
for training. Then, the agent was trained with the minibatch
sampling technic. After training, the trained agent can be adopted
to real-time scheduling.

V. SIMULATIONS

A. Simulation Setup

Appliances adopted in simulations are shown in Table I. A day
(started at 8 A.M. and ended at 8 A.M. of next day) is divided into

Algorithm 1: Data Sampling Method.
1: Create an environment ENV of smart home
2: Initialize data buffer md

3: Initialize ENV with d to get state S0

4: for t = 1, 2, . . ., Tend do
5: Sample action at and log πθ(at|st) based on (35)
6: Constrain at with (2), (5b), (7d), (9b), (12a)
7: Execute at and observe St+1

8: Calculate rt+1 based on (26)
9: Store (st, at, st+1, rt+1, log πθ(at|st)) to md

10: end for
11: The data in md are for training

Algorithm 2: Training Process of PPO Agent.
1: Initialize policy network πθ and state value network vθ
2: Initialize the maximum episodes Mep, the trajectory

size D
3: for episode = 1, 2, . . .,Mep do
4: Initialize multiprocess pool P and trajectory buffer

M
5: P generates subprocesses with tasks d = 1, 2, . . ., D
6: Execute Algorithm 1 in each subprocess
7: Push data buffer of subprocess to M
8: for i = 1, 2, . . ., N do
9: Sample minibatch data from M

10: Calculate Ât based on (29)
11: Calculate LTotal

t (θt) based on (32)
12: Update networks by minimizing loss LTotal

t (θt)
13: end for
14: end for
15: Use πθ for real-time energy management in smart

home

96 time slots, that is, Tend = 96, ΔT = 0.25 h. At the beginning
of each time slot, HEMS will monitor the state of smart home
and then execute scheduling action, ultimately minimizing the
energy cost of the day. The IBR factor is set to ξ = 1.4423
[23] and the maximum power limitation P g

max = 6 kW. We
adopted truncated normal distribution TN (μ, σ, min, max) [32]
to simulate the behaviors of users, which can generate tini and
tend of each appliances in smart home randomly. The parameters
related to the PV are set as ρpv = 0.2;Apv = 15. In addition, the
parameters of HVAC, EWH, EV, and ESS are set as Table II.

Both the policy network and the value network have 3 hidden
layers with 128 neurons in each layer. The activation functions
Relu and Tanh are adopted in hidden layers of the policy network
and the value network, respectively.

Hourly RTP data from CAISO [33], outdoor temperature
data in Los Angeles from NOAA/NCDC [34], solar irradiation
data in Golden city of USA from NREL/MIDC [35] are adopted
in simulations. The scheduling windows of appliances and Wt

of EWH are generated by TN. Also, the data from December
1, 2019 to January 31, 2020, is for training, the test after
training using data from December 1, 2020 to January 31, 2021.
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TABLE I
PARAMETERS OF APPLIANCES USED IN SIMULATIONS

TABLE II
PARAMETERS OF CONTROLLABLE APPLIANCES

Parameters of PPO agent are shown in Table III. The DRL
agent is implemented by Pytorch-1.0, Python-3.8, and trained
on Windows 10 platform with I5-10400 CPU(2.9 GHz), 16 GB
of RAM. The training process took around 2 h but the trained
agent makes decision only in milliseconds at each time slot,
which can be used for real-time scheduling.

B. Performance Analysis

1) Learning Performance: Like other learning-based meth-
ods, it is necessary to analyze the training result before testing.
It can be observed from Fig. 3 that the mean reward agent got
increases rapidly after the training process begins and gradually

TABLE III
PARAMETERS OF PPO AGENT WHILE TRAINING

Fig. 3. Mean reward in each episode while in training.

Fig. 4. Performance of shiftable appliances on a test day. (a) Real-time
price [33]. (b) Shiftable appliances. The appliance can be operated by HEMS
within the region between the two red lines.

converges, ultimately, reaching −1.6 at around 800 episodes,
and remains stable, which means the agent has successfully
learned an effective policy. The training process took around
2 h.

2) Test Day Scheduling Results: Applying the trained agent
in the testing process, the scheduling results of a certain day
are shown in Figs. 4–7. We can observe from Fig. 4 that the
shiftable appliances are scheduled for the periods where the elec-
tricity price is low. As shown in Fig. 5, the indoor temperature
and the water temperature are kept near the set temperature,
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Fig. 5. Performance of thermal loads on a test day.

Fig. 6. Performance of EV and ESS on a test day. (a) EV. The region between
red lines denotes the time when EV is at home. (b) ESS.

Fig. 7. Total power during the test day. (a) Without scheduling. (b) After
scheduling.

indicating that thermal comfort is guaranteed. Meanwhile, the
charging task of EV is scheduled for the low-price period instead
of charging immediately after getting home and is completed
before leaving the home, shown in Fig. 6(a). Although the ESS
operates throughout the day, it performs one charge–discharge
cycle to avoid battery degradation caused by overuse, which is
shown in Fig. 6(b). Note that the ESS charges from 12:00 to
15:00 when the PV output is surplus and the electricity prices
are low instead of at midnight when the electricity prices are
cheapest, which makes full use of the PV output and reduces the
energy cost of charging. The proposed method avoids purchasing
too much electricity from the grid when the electricity prices are
high while also keeping the total power demand below 6 kW to
avoid the IBR price, shown in Fig. 7.

C. Performance Comparison

1) Comparison Setup: The real-world data from December
1, 2020 to January 31, 2021, are used in our comparison ex-
periment. The proposed algorithm is compared with DDPG
and TRPO, which are state-of-the-art DRL algorithms based
on the actor–critic frame. DDPG and TRPO adopt the same
policy network and value network as the proposed algorithm.
Besides, another three baselines are considered, which are shown
as follows.

1) Baseline 1 (B1): Without HEMS and ESS. HVAC and
EWH adopt ON/OFF control, stop working when the tem-
perature is higher than Tset, otherwise work at maximum
power. EV charges at a maximum power immediately after
getting home. Other appliances, which are assigned a task
will work without delay.

2) Baseline 2 (B2): Assuming that all future information
(RTP, outdoor temperature, etc.) is known. The energy
management problem can be formulated into a constrained
optimization problem, which can be solved by a solver
(e.g., Gurobi [36]). Note that B2 represents the best
scheduling performance but cannot be truly achieved since
the future information is unpredictable.

3) Baseline 3 (B3): Adopting MPC to schedule the appliances
in the smart home [6]. The MPC controller forecasts the
future information (RTP, outdoor temperature, etc.) in
each time slot t for a receding horizon (t, T ). Then, the
MPC solves an optimization problem and executes the first
step of the optimized result. We assume that the prediction
of the future information is equal to the real data plus a bias
sampling from a normal distribution N(0, στ

2) truncated
by [−0.15στ , 0.15στ ], where στ 2 is the variance of the
real data of the horizon (t, T ).

2) Comparison Results: It can be seen from Fig. 8 that the
proposed algorithm converges faster and reaches a higher re-
ward, which means the proposed algorithm has learned a better
policy to deal with the energy management problem in the smart
home. Note that B2 represents the lower bound of the energy cost
but cannot be truly achieved. As shown in Fig. 9, compared with
B1, the cumulative energy cost of the proposed algorithm has
been reduced by 42.9%, which is close to that of B2 (50.9%).
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Fig. 8. Comparison of TRPO, DDPG, and the proposed algorithm while
training.

Fig. 9. Cumulative energy cost on the test days.

TABLE IV
DISTRIBUTION OF MEAN COST IN TEST DAYS ($)

TABLE V
CALCULATION TIME OF DIFFERENT METHODS WHILE MAKING DECISION AT

EACH TIME SLOT

However, B3, DDPG, and TRPO just reduce the energy cost
by 39.0%, 29.2%, and 34.5%, respectively. Besides, the thermal
comfort cost of DDPG and TRPO is higher than that of the
proposed method, shown in Table IV. Compared with B3, the
proposed method reached a lower ESS cost, which means less
degradation of the ESS battery. The calculation times of each
method while making decision in the testing process is shown
in Table V. The learning-based methods (i.e., TRPO, DDPG,
and the proposed method) cost much time in training process
but cost milliseconds in the testing process, which can be used
in real-time scheduling. However, the MPC controller (i.e., B3)
has to solve a mixed-integer nonconvex optimization problem,
which costs much more time.

TABLE VI
CUMULATIVE ELECTRICITY COST ON THE TEST DAYS ($)

Fig. 10. Average of indoor temperature deviation on the test days.

D. Algorithmic Robustness

The model of HVAC in (5a) is a simplification of that in
reality. In the real world, the indoor temperature is affected
by many external factors (e.g., weather, user’s behaviors, etc.),
which cannot be accurately described by (5a). Therefore, a
thermodynamic model with disturbance is considered to verify
the robustness of the proposed algorithm, specifically, T in

t+1 =
εT in

t + (1− ε)(T out
t − ηHVACPHVAC

t ΔT/A) + ut, where ut is a
random variable that obeys a uniform distributionU(a, b). In this
section, three cases are considered, which is, −a = b = 1, 2, 3.
Compared with baselines B1, B3, DDPG, and TRPO, the pro-
posed algorithm achieves a lower energy cost and is close to the
B2 in all three cases, shown in Table VI. Meanwhile, it can be
observed from Fig. 10 that the proposed algorithm can achieve a
lower indoor temperature deviation in all three cases. The indoor
temperature is maintained in a comfortable range. In general,
the robustness of the proposed algorithm shows its potential
practicability.

VI. CONCLUSION

In this article, a PPO-based home energy management al-
gorithm had been proposed to minimize the household energy
cost. A policy network with discrete and continuous outputs
was adopted to generate actions for different types of devices
in smart home. Also, the user’s thermal comfort requirements
as well as the uncertainties of user’ behaviors, RTP, outdoor
temperature, and PV power generation had been taken into
consideration. Besides, the degradation cost model of the battery
in ESS was considered. Simulations based on the real-world data
had shown that the proposed algorithm could effectively solve
the energy management problem in the smart home. The results
show that the proposed method performed better in reducing
the household energy cost while maintaining the comfort of
users and minimizing the ESS degradation cost. The robustness
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test has shown that the algorithm had potential practicability. In
future work, we will further investigate the energy management
problem of aggregated smart homes, e.g., apartments and com-
mercial buildings. In this situation, the interaction between smart
homes is considered to reduce the energy cost of aggregated
smart homes. The privacy of users while interacting should be
guaranteed as well.

REFERENCES

[1] N. G. Paterakis, O. Erdinc, A. G. Bakirtzis, and J. P. Catalao, “Opti-
mal household appliances scheduling under day-ahead pricing and load-
shaping demand response strategies,” IEEE Trans. Ind. Informat., vol. 11,
no. 6, pp. 1509–1519, Dec. 2015.

[2] S. Althaher, P. Mancarella, and J. Mutale, “Automated demand response
from home energy management system under dynamic pricing and
power and comfort constraints,” IEEE Trans. Smart Grid, vol. 6, no. 4,
pp. 1874–1883, Jul. 2015.

[3] M. Shafie-Khah and P. Siano, “A stochastic home energy management
system considering satisfaction cost and response fatigue,” IEEE Trans.
Ind. Informat., vol. 14, no. 2, pp. 629–638, Feb. 2018.

[4] X. Wu, X. Hu, X. Yin, and S. J. Moura, “Stochastic optimal energy
management of smart home with PEV energy storage,” IEEE Trans. Smart
Grid, vol. 9, no. 3, pp. 2065–2075, May 2018.

[5] S. Paul and N. P. Padhy, “Real-time energy management for smart homes,”
IEEE Syst. J., vol. 15, no. 3, pp. 4177–4188, Sep. 2021.

[6] M. Yousefi, A. Hajizadeh, M. N. Soltani, and B. Hredzak, “Predictive
home energy management system with photovoltaic array, heat pump,
and plug-in electric vehicle,” IEEE Trans. Ind. Informat., vol. 17, no. 1,
pp. 430–440, Jan. 2021.

[7] D. Zhang, S. Li, M. Sun, and Z. ONeill, “An optimal and learning-based
demand response and home energy management system,” IEEE Trans.
Smart Grid, vol. 7, no. 4, pp. 1790–1801, Jul. 2016.

[8] C. Keerthisinghe, A. C. Chapman, and G. Verbič, “Energy management
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