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Preface

Tell me and I forget. Teach me and I remember. Involve me and I learn.
—Benjamin Franklin

Reinforcement learning (RL) has enabled a number of breakthroughs in AI. One of
the key algorithms in RL is deep Q-learning (DQL) that can be applied to a large
number of dynamic decision problems. Popular examples are arcade games and
board games, such as Go, in which RL and DQL algorithms have achieved superhu‐
man performance in many instances. This has often happened despite the belief of
experts that such feats would be impossible for decades to come.

Finance is a discipline with a strong connection between theory and practice. Theo‐
retical advancements often find their way quickly into the applied domain. Many
problems in finance are dynamic decision problems, such as the optimal allocation of
assets over time. Therefore it is, on the one hand, theoretically interesting to apply
DQL to financial problems. On the other hand, it is also in general quite easy and
straightforward to apply such algorithms—usually after some thorough testing—in
the financial markets.

In recent years, financial research has seen a strong growth in publications related to
RL, DQL, and related methods applied to finance. However, there is hardly any
resource in book form—beyond the purely theoretical ones—for those who are look‐
ing for an applied introduction to this exciting field. This book closes the gap in that
it provides the required background in a concise fashion and otherwise focuses on
the implementation of the algorithms in the form of self-contained Python code and
the application to important financial problems.

Target Audience
This book is intended as a concise, Python-based introduction to the major ideas and
elements of RL and DQL as applied to finance. It should be useful to both students
and academics as well as to practitioners in search of alternatives to existing financial
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theories and algorithms. The book expects basic knowledge of the Python program‐
ming language, object-oriented programming, and the major Python packages used
in data science and machine learning, such as NumPy, pandas, matplotlib, scikit-
learn, and TensorFlow.

Overview of the Book
The book consists of the following chapters:

Chapter 1
The first chapter focuses on learning through interaction with four major exam‐
ples: probability matching, Bayesian updating, RL, and DQL.

Chapter 2
The second chapter introduces concepts from dynamic programming (DP) and
discusses DQL as an approach to approximate solutions to DP problems. The
major theme is the derivation of optimal policies to maximize a given objective
function through taking a sequence of actions and updating the optimal policy
iteratively. DQL is illustrated on the basis of a DQL agent that learns to play the
CartPole game from the Gymnasium Python package.

Chapter 3
The third chapter develops a first Finance environment that allows the DQL
agent from Chapter 2 to learn a financial prediction game. Although the environ‐
ment formally replicates the API of the CartPole game, it misses some important
characteristics that are needed to apply RL successfully.

Chapter 4
The fourth chapter is about data augmentation based on Monte Carlo simulation
(MCS) approaches, and it discusses the addition of noise to historical data and
the simulation of stochastic processes.

Chapter 5
The fifth chapter introduces generative adversarial networks (GANs) to syntheti‐
cally generate time series data that has statistical characteristics that are similar to
those of historical time series data on which a GAN was trained.

Chapter 6
Building on the example from Chapter 3, this chapter applies DQL to the prob‐
lem of algorithmic trading based on the prediction of the next price movement’s
direction.
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Chapter 7
The seventh chapter is about learning optimal dynamic hedging strategies for an
option with European exercise in the Black-Scholes-Merton (1973) model. In
other words, delta hedging or dynamic replication of the option is the goal.

Chapter 8
This chapter applies DQL to three canonical examples in asset management: one
risky asset and one risk-free asset, two risky assets, and three risky assets. The
problem is to dynamically allocate funds to the available assets to maximize a
profit target or a risk-adjusted return (Sharpe ratio).

Chapter 9
The ninth chapter is about the optimal liquidation of a large position in a stock.
Given a certain risk aversion, the total execution costs are to be minimized. This
use case differs from the others in that all actions are tightly connected with each
other through an additional constraint. The chapter also introduces an additional
RL algorithm in the form of an actor-critic implementation.

Chapter 10
The final chapter of the book provides some concluding remarks and sketches
out how the examples presented in the book can be improved upon.

About the Code in This Book
The code in this book is primarily developed using TensorFlow 2.13. Readers can run
the code directly on The Python Quants’ Quant Platform with no additional installa‐
tions required—only a free registration. This platform allows readers to effortlessly
execute the code and reproduce the results as presented in the book. The code is also
available for download to run locally. Future updates, such as support for newer
TensorFlow versions, are planned. Additionally, the Quant Platform offers access to a
user forum where readers can ask questions and receive support on all topics related
to the book.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.
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Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or with values
determined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://rl4f.pqp.io.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.
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We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example, this book would be
attributed as “Reinforcement Learning for Finance by Yves Hilpisch (O’Reilly). Copy‐
right 2025 Yves Hilpisch, 978-1-098-16914-5.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-889-8969 (in the United States or Canada)
707-827-7019 (international or local)
707-829-0104 (fax)
support@oreilly.com
https://oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/RL-for-finance.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media

Watch us on YouTube: https://youtube.com/oreillymedia

Preface | xi

mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com
mailto:support@oreilly.com
https://oreilly.com/about/contact.html
https://oreil.ly/RL-for-finance
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://youtube.com/oreillymedia


Acknowledgments
The contents of this book evolved through a series of online webinars, classes within
the CPF Program, and workshops at conferences across Europe and the USA. I
extend my sincere thanks to all participants whose valuable feedback helped shape
the final version of this work.

A special thank you goes to Dr. Ivilina Popova for her insightful feedback on the
financial sections and the book as a whole. Her contributions were instrumental in
refining the content. I am also grateful to the entire O’Reilly team for their
professionalism and ongoing support. Their constructive input and thoughtful sug‐
gestions led to significant improvements throughout the manuscript.

This book is dedicated to Sandra and Henry. To Sandra, for her unwavering love and
support throughout this journey. To Henry, with the hope that this work will inspire
him in his studies of data science and artificial intelligence, and fuel his passion for
learning.

xii | Preface

https://cpf.tpq.io


PART I

The Basics

The first part of the book covers the basics of reinforcement learning and provides
background information. It consists of three chapters:

• Chapter 1 focuses on learning through interaction with four major examples:
probability matching, Bayesian updating, reinforcement learning (RL), and deep
Q-learning (DQL).

• Chapter 2 introduces concepts from dynamic programming (DP) and discusses
DQL as an approach to approximate solutions to DP problems. The major theme
is the derivation of optimal policies to maximize a given objective function
through taking a sequence of actions and updating the optimal policy iteratively.
DQL is illustrated based on the CartPole game from the Gymnasium Python
package.

• Chapter 3 develops a first Finance environment that allows the DQL agent from
Chapter 2 to learn a financial prediction game. Although the environment for‐
mally replicates the API of the CartPole, it misses some important characteristics
that are needed to apply RL successfully.





CHAPTER 1

Learning Through Interaction

The idea that we learn by interacting with our environment is probably the first to
occur to us when we think about the nature of learning.

—Sutton and Barto (2018)

For human beings and animals alike, learning is almost as fundamental as breathing.
It is something that happens continuously and most often unconsciously. There are
different forms of learning. The one most important to the topics covered in this
book is based on interacting with an environment.

Interaction with an environment provides the learner—or agent henceforth—with
feedback that can be used to update their knowledge or to refine a skill. In this book,
we are mostly interested in learning quantifiable facts about an environment, such as
the odds of winning a bet or the reward that an action yields.

The next section discusses Bayesian learning as an example of learning through inter‐
action. “Reinforcement Learning” on page 11 presents breakthroughs in AI that were
made possible through RL. It also describes the major building blocks of RL. “Deep
Q-Learning” on page 16 explains the two major characteristics of DQL, which is the
most important algorithm in the remainder of the book.

Bayesian Learning
Two examples illustrate learning by interacting with an environment: tossing a biased
coin and rolling a biased die. The examples are based on the idea that an agent bet‐
ting repeatedly on the outcome of a biased gamble (and remembering all outcomes)
can learn bet-by-bet about a gamble’s bias and thereby about the optimal policy for
betting. The idea, in that sense, makes use of Bayesian updating. Bayes’ theorem and
Bayesian updating date back to the 18th century (Bayes and Price 1763). A modern
and Python-based discussion of Bayesian statistics is found in Downey (2021).
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Tossing a Biased Coin
Assume the simple game of betting on the outcome of tossing a biased coin. As a
benchmark, consider the special case of an unbiased coin first. Agents are allowed to
bet for free on the outcome of the coin tosses. An agent might, for example, bet ran‐
domly on either heads or tails. The reward is 1 USD if the agent wins and nothing if
the agent loses. The agent’s goal is to maximize the total reward. The following
Python code simulates several sequences of 100 bets each:

In [1]: import numpy as np
        from numpy.random import default_rng
        rng = default_rng(seed=100)

In [2]: ssp = [1, 0]  

In [3]: asp = [1, 0]  

In [4]: def epoch():
            tr = 0
            for _ in range(100):
                a = rng.choice(asp)  
                s = rng.choice(ssp)  
                if a == s:
                    tr += 1  
            return tr

In [5]: rl = np.array([epoch() for _ in range(250)])  
        rl[:10]
Out[5]: array([56, 47, 48, 55, 55, 51, 54, 43, 55, 40])

In [6]: rl.mean()  
Out[6]: 49.968

The state space, 1 for heads and 0 for tails

The action space, 1 for a bet on heads and 0 for one on tails

The random bet

The random coin toss

The reward for a winning bet

The simulation of multiple sequences of bets

The average total reward

The average total reward in this benchmark case is close to 50. The same result might
be achieved by solely betting on either heads or tails.

4 | Chapter 1: Learning Through Interaction



Assume now that the coin is biased so that heads prevails in 80% of the coin tosses.
Betting solely on heads would yield an average total reward of about $80 for 100 bets.
Betting solely on tails would yield an average total reward of about $20. But what
about the random betting strategy? The following Python code simulates this case:

In [7]: ssp = [1, 1, 1, 1, 0]  

In [8]: asp = [1, 0]  

In [9]: def epoch():
            tr = 0
            for _ in range(100):
                a = rng.choice(asp)
                s = rng.choice(ssp)
                if a == s:
                    tr += 1
            return tr

In [10]: rl = np.array([epoch() for _ in range(250)])
         rl[:10]
Out[10]: array([53, 56, 40, 55, 53, 49, 43, 45, 50, 51])

In [11]: rl.mean()
Out[11]: 49.924

The biased state space

The same action space as before

Although the coin is now highly biased, the average total reward of the random bet‐
ting strategy is about the same as in the benchmark case. This might sound counter‐
intuitive. However, the expected win rate is given by 0.8 · 0.5 + 0.2 · 0.5 = 0.5. In
words, when betting on heads, the win rate is 80%, and when betting on tails, it is
20%. Together, the total reward is as before, on average. As a consequence, without
learning, the agent is not able to capitalize on the bias.

A learning agent, on the other hand, can gain an edge by basing the betting strategy
on the previous outcomes they observe. To this end, it is already enough to record all
observed outcomes and to choose randomly from the set of all previous outcomes. In
this case, the bias is reflected in the number of times the agent randomly bets on
heads as compared to tails. The Python code that follows illustrates this simple learn‐
ing strategy:

In [12]: ssp = [1, 1, 1, 1, 0]

In [13]: def epoch(n):
             tr = 0
             asp = [0, 1]  
             for _ in range(n):
                 a = rng.choice(asp)
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                 s = rng.choice(ssp)
                 if a == s:
                     tr += 1
                 asp.append(s)  
             return tr

In [14]: rl = np.array([epoch(100) for _ in range(250)])
         rl[:10]
Out[14]: array([71, 65, 67, 69, 68, 72, 68, 68, 77, 73])

In [15]: rl.mean()
Out[15]: 66.78

The initial action space

The update of the action space with the observed outcome

With remembering and learning, the agent achieves an average total reward of about
$66.80—a significant improvement over the random strategy without learning. This
is close to the expected value of (0.82 + 0.22) · 100 = 68.

This strategy, while not optimal, is regularly observed in experiments involving
human beings—and, maybe somewhat surprisingly, in animals as well. It is called
probability matching.

On the other hand, the agent can do better by simply betting on the most likely out‐
come as derived from past results. The following Python code implements this
strategy:

In [16]: from collections import Counter

In [17]: ssp = [1, 1, 1, 1, 0]

In [18]: def epoch(n):
             tr = 0
             asp = [0, 1]  
             for _ in range(n):
                 c = Counter(asp)  
                 a = c.most_common()[0][0]  
                 s = rng.choice(ssp)
                 if a == s:
                     tr += 1
                 asp.append(s)  
             return tr

In [19]: rl = np.array([epoch(100) for _ in range(250)])
         rl[:10]
Out[19]: array([81, 70, 74, 77, 82, 74, 81, 80, 77, 78])

In [20]: rl.mean()
Out[20]: 78.828
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1 Utility maximization is an economic principle that describes the process by which agents choose the best
available option to achieve the highest level of satisfaction or utility given their preferences, constraints (such
as income or budget), and available alternatives.

2 Modern psychology is a discipline focused on university students in particular, rather than on human beings
in general. For example, Hanel and Vione (2016) conclude, “In summary, our results indicate that generaliz‐
ing from students to the general public can be problematic…as students vary mostly randomly from the gen‐
eral public.”

The initial action space

The frequencies of the action space elements

The action is chosen with the highest frequency

The update of the action space with the observed outcome

In this case, the gambler achieves an average total reward of $78.50, which is close to
the theoretical optimum of $80. In this context, this strategy seems to be the optimal
one.

Probability Matching

Koehler and James (2014) report results from studies analyzing
probability matching, utility maximization, and other types of deci‐
sion strategies.1 The studies include a total of 1,557 university stu‐
dents.2 The researchers find that probability matching is the most
frequent strategy chosen or a close second to the utility maximizing
strategy.
The researchers also find that the utility maximizing strategy is
chosen in general by the “most cognitively able participants.” They
approximate cognitive ability through Scholastic Aptitude Test
(SAT) scores, Mathematics Experience Composite scores, and the
number of university statistics courses taken.
As is often the case in decision making, human beings might need
formal training and experience to overcome urges and behaviors
that feel natural to achieve optimal results.

Rolling a Biased Die
As another example, consider a biased die. For this die, the probability for the out‐
come 4 shall be five times as likely as for any other number of the six-sided die. The
following Python code simulates sequences of 600 bets on the outcome of the die,
where a winning bet is rewarded with 1 USD and a losing bet is not rewarded:
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In [21]: ssp = [1, 2, 3, 4, 4, 4, 4, 4, 5, 6]  

In [22]: asp = [1, 2, 3, 4, 5, 6]  

In [23]: def epoch():
             tr = 0
             for _ in range(600):
                 a = rng.choice(asp)
                 s = rng.choice(ssp)
                 if a == s:
                     tr += 1
             return tr

In [24]: rl = np.array([epoch() for _ in range(250)])
         rl[:10]
Out[24]: array([ 92,  96, 106,  99,  96, 107, 101, 106,  92, 117])

In [25]: rl.mean()
Out[25]: 101.22

The biased-state space

The uninformed-action space

Without learning, the random betting strategy yields an average total reward of about
$100. With perfect information about the biased die, the agent could expect an aver‐
age total reward of about $300 because it would win about 50% of the 600 bets.

With probability matching, the agent will not achieve a perfect outcome—as was the
case with the biased coin. However, the agent can improve the average total reward
by more than 75%, as the following Python code shows:

In [26]: def epoch():
             tr = 0
             asp = [1, 2, 3, 4, 5, 6]  
             for _ in range(600):
                 a = rng.choice(asp)
                 s = rng.choice(ssp)
                 if a == s:
                     tr += 1
                 asp.append(s)  
             return tr

In [27]: rl = np.array([epoch() for _ in range(250)])
         rl[:10]
Out[27]: array([182, 174, 162, 157, 184, 167, 190, 208, 171, 153])

In [28]: rl.mean()
Out[28]: 176.296
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The initial action space

The update of the action space

The average total reward increases to about $176, which is not that far from the
expected value of that strategy of (0.52 + 0.12 · 5) · 600 = 180.

As with the biased coin-tossing game, the agent again can do better by simply choos‐
ing the action with the highest frequency in the updated action space, as the following
Python code confirms. The average total reward of $297 is pretty close to the theoret‐
ical maximum of $300:

In [29]: def epoch():
             tr = 0
             asp = [1, 2, 3, 4, 5, 6]  
             for _ in range(600):
                 c = Counter(asp)  
                 a = c.most_common()[0][0]  
                 s = rng.choice(ssp)
                 if a == s:
                     tr += 1
                 asp.append(s)  
             return tr

In [30]: rl = np.array([epoch() for _ in range(250)])
         rl[:10]
Out[30]: array([305, 288, 312, 306, 318, 302, 304, 311, 313, 281])

In [31]: rl.mean()
Out[31]: 297.204

The initial action space.

The frequencies of the action space elements.

The action is chosen with the highest frequency.

The update of the action space with the observed outcome.

Bayesian Updating
The Python code and simulation approach in the previous subsections make for a
simple way to implement the learning of an agent through playing a potentially
biased game. In other words, by interacting with the betting environment, the agent
can update their estimates for the relevant probabilities.
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3 For a comprehensive overview of Bayesian methods in finance, see Rachev et al. (2008).

The procedure can therefore be interpreted as Bayesian updating of probabilities—to
find out, for example, the bias of a coin.3 The following discussion illustrates this
insight based on the coin-tossing game.

Assume that the probability for heads (h) is P(h ) = α and that the probability for tails
(t) accordingly is P(t) = 1 - α. The coin flips are assumed to be identically and inde‐
pendently distributed (IID) according to the binomial distribution. Assume that an
experiment yields f h  times heads and f t  times tails. Furthermore, assume that the
binomial coefficient is given by the following:

B = ( f h + f t

f h
)

In that case, we get P(E | α) = B · α f h · (1 - α) f t  as the probability that the experi‐
ment yields the assumed observations. E  represents the event that f h  times heads
and f t  times tails is observed.

One approach to deriving an appropriate value for α given the results from the
experiment is maximum likelihood estimation (MLE). The goal of MLE is to find a
value α that maximizes P(E | α). The problem to solve is as follows:

α MLE = argmax
α

P(E | α)

= argmax
α

ln P(E | α)

= argmax
α

ln (B · α f h · (1 - α) f t)

= argmax
α

ln B + f h ln α + f t ln (1 - α)

With this, one derives the optimal estimator by taking the first derivative with respect
to α and setting it equal to zero:

d
dα P(E | α) = 0

f h
d

dα ln α + f t
d

dα ln (1 - α) = 0

f h

α -
f t

1 - α = 0
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Simple manipulations yield the following maximum likelihood estimator:

α MLE =
f h

f h + f t

α MLE  is the frequency of heads over the total number of flips in the experiment. This
is what has been learned flip-by-flip through the simulation approach, that is,
through an agent betting on the outcomes of coin flips one after the other and
remembering previous outcomes.

In other words, the agent has implemented Bayesian updating incrementally and bet-
by-bet to arrive, after enough bets, at a numerical estimator α̂ close to α MLE , that is,
α̂ ≈ α MLE .

Reinforcement Learning
Reinforcement learning (RL) is a type of machine learning (ML) algorithm that relies
on the interaction of an agent with an environment. This aspect is similar to the
agent playing a potentially biased game and learning about relevant probabilities.
However, RL algorithms are more general and capable in that an agent can learn
from high-dimensional input to accomplish complex tasks.

While the mode of learning, interaction or trial and error, differs from other ML
methods, the goals are nevertheless the same. Mitchell (1997) defines ML as follows:

A computer program is said to learn from experience E  with respect to some class of
tasks T  and performance measure P , if its performance at tasks in T , as measured by
P , improves with experience E .

Reinforcement Learning

Most books on ML focus on supervised and unsupervised learning
algorithms, but RL is the learning approach that comes closest to
how human beings and animals learn: namely, through repeated
interaction with their environment and receiving positive (rein‐
forcing) or negative (punishing) feedback. Such a sequential
approach is much closer to human learning than simultaneous
learning from a generally very large number of labeled or unlabeled
examples.

This section provides some general background on RL while the next chapter intro‐
duces more technical details. Sutton and Barto (2018) provide a comprehensive over‐
view of RL approaches and algorithms. On a high level, they describe RL as follows:
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4 The book by Goodfellow et al. (2016) provides a comprehensive treatment of deep neural networks.

5 See, for example, the seminal works by Watkins (1989) and Watkins and Dayan (1992).

6 See the Wikipedia article for a detailed history of this console.

Reinforcement learning is about learning from interaction how to behave in order to
achieve a goal. The reinforcement learning agent and its environment interact over a
sequence of discrete time steps.

Major Breakthroughs
In AI research and practice, two types of algorithms have seen a meteoric rise over
the last 10 years: deep neural networks (DNNs) and reinforcement learning.4 While
DNNs have had their own success stories in many different application areas, they
also play an integral role in modern RL algorithms, such as Q-learning (QL).5

The book by Gerrish (2018) recounts several major success stories—and sometimes
also failures—of AI over recent decades. In almost all of them, DNNs play a central
role and RL algorithms sometimes are also a core part of the story. Among those suc‐
cesses are AIs playing Atari 2600 games, chess, and Go at superhuman levels. These
are discussed in what follows.

Concerning RL, and Q-learning in particular, the company DeepMind has achieved
several noteworthy breakthroughs. In Mnih et al. (2013) and Mnih et al. (2015), the
company reports how a so-called deep Q-learning (DQL) agent can learn to play
Atari 2600 console6 games at a superhuman level through interacting with a game-
playing API. Bellemare et al. (2013) provide an overview of this popular API for the
training of RL agents.

While mastering Atari games is impressive for an RL agent and was celebrated by the
AI researcher and retro gamer communities alike, the breakthroughs concerning
popular board games, such as Go and chess, gained the highest public attention and
admiration.

In 2014, researcher and philosopher Nick Bostrom predicted in his popular book
Superintelligence that it might take another 10 years for AI researchers to come up
with an AI agent that plays the game of Go at a superhuman level:

Go-playing programs have been improving at a rate of about 1 dan/year in recent
years. If this rate of improvement continues, they might beat the human world cham‐
pion in about a decade.

However, DeepMind researchers were able to successfully leverage the DQL tech‐
niques developed for playing Atari games and to come up with a DQL agent, called
AlphaGo, that first beat the European champion in Go in 2015 and even beat the
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7 Public interest in this achievement is, for example, reflected in the more than 34 million views (as of Novem‐
ber 2023) of the YouTube documentary about AlphaGo.

world champion in early 2016.7 The details are documented in Silver et al. (2017).
They summarize:

A long-standing goal of AI is an algorithm that learns, tabula rasa, superhuman profi‐
ciency in challenging domains. Recently, AlphaGo became the first program to defeat
a world champion in the game of Go. The tree search in AlphaGo evaluated positions
and selected moves using deep neural networks. These neural networks were trained
by supervised learning from human expert moves, and by reinforcement learning from
self-play.

DeepMind was able to generalize the approach of AlphaGo, which primarily relies on
DQL agents playing a large number of games against themselves (“self-playing”), to
the board games chess and shogi. DeepMind calls this generalized agent AlphaZero.
What is most impressive about AlphaZero is that it needs to spend only nine hours
on training by self-playing chess to reach not only a superhuman level but also a level
well above any other computer engine, such as Stockfish. The paper by Silver et al.
(2018) provides the details and summarizes:

In this paper, we generalize this approach into a single AlphaZero algorithm that can
achieve superhuman performance in many challenging games. Starting from random
play and given no domain knowledge except the game rules, AlphaZero convincingly
defeated a world champion program in the games of chess and shogi (Japanese chess),
as well as Go.

The paper also provides the following training times:

Training lasted for approximately 9 hours in chess, 12 hours in shogi, and 13 days in
Go…

The dominance of AlphaZero over Stockfish in chess is not only remarkable given
the short training time, but also because AlphaZero evaluates a much lower number
of positions per second than Stockfish:

AlphaZero searches just 60,000 positions per second in chess and shogi, compared
with 60 million for Stockfish…

One is inclined to attribute this to some form of acquired tactical and strategic intelli‐
gence on the part of AlphaZero as compared to predominantly brute force computa‐
tion on the part of Stockfish.
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8 The Gymnasium project is a fork of the original Gym project by OpenAI whose support and maintenance
have stopped.

Reinforcement and Deep Learning

The breakthroughs in AI outlined in this subsection rely on a com‐
bination of RL and DL. While DL can be applied without RL in
many scenarios, such as standard supervised and unsupervised
learning situations, RL is applied today almost exclusively with the
help of DL and DNNs.

Major Building Blocks
It is not that simple to exactly pin down why DQL algorithms are so successful in
many domains that were so hard to crack by computer scientists and AI researchers
for decades. However, it is relatively straightforward to describe the major building
blocks of an RL and DQL algorithm.

It generally starts with an environment. This can be an API to play Atari games, an
environment for playing chess, or an environment for navigating a map indoors or
outdoors. Nowadays, there are many such environments available for getting started
with RL efficiently. One of the most popular ones is the Gymnasium environment.8

On the Github page you read the following:

Gymnasium is an open source Python library for developing and comparing reinforce‐
ment learning algorithms by providing a standard API to communicate between learn‐
ing algorithms and environments, as well as a standard set of environments compliant
with that API.

At any given point, an environment is characterized by a state. The state summarizes
all the relevant, and sometimes also irrelevant, information for an agent to receive as
input when interacting with an environment. Concerning chess, the board positions
of all relevant pieces represent such a state. Sometimes, additional input is required;
for example, whether castling has happened or not. For an Atari game, the pixels on
the screen and the current score could represent the state of the environment.

The agent in this context subsumes all elements of the RL algorithm that interact with
the environment and that learn from these interactions. In an Atari games context,
the agent might represent a player playing the game. In the context of chess, it can be
the player playing either the white or the black pieces.

An agent can choose one action from an often finite set of allowed actions. In an
Atari game, movements to the left or right might be allowed actions. In chess, the
rule set specifies both the number of allowed actions and the allowed action types.
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Given the action of an agent, the state of the environment is updated. One such
update is generally called a step. The concept of a step is general enough to encom‐
pass both heterogeneous and homogeneous time intervals between two steps.
Whereas in Atari games, for example, real-time interaction with the game environ‐
ment is simulated by rather short, homogeneous time intervals (on a “game clock”),
chess players have quite a bit of flexibility with regard to how long it takes them to
make the next move (take the next action).

Depending on the action an agent chooses, a reward or penalty is awarded. For an
Atari game, points are a typical reward. In chess, it is often a bit more subtle in that
an evaluation of the current board positions of the pieces must take place. Improve‐
ments in the results of the evaluation then represent a reward while a worsening of
the results of the evaluation represents a penalty.

In RL, an agent is assumed to maximize an objective function. In Atari games, this can
simply be maximizing the score achieved, that is, the sum of points collected during
game play. In other words, it is a hunt for new “high scores.” In chess, it is to check‐
mate the opponent as represented by, say, an infinite evaluation score of the board
positions of the pieces.

The policy defines which action an agent takes given a certain state of the environ‐
ment. This is done by assigning values—technically, floating-point numbers—to all
possible combinations of states and actions. An optimal action is then chosen by
looking up the highest value possible for the current state and the set of possible
actions. Given a certain state in an Atari game, represented by all the pixels that make
up the current scene, the policy might specify that the agent chooses “move right” as
the optimal action. In chess, given a specific board position, the policy might specify
to move the white king from c1 to b1.

An episode is a collection of steps from the initial state of the environment until suc‐
cess is achieved or failure is observed. In an Atari game, this means from the start of
the game until the agent has either lost all their “lives” or achieved the final goal of
the game. In chess, an episode represents a full game until a win, loss, or draw.

In summary, RL algorithms are characterized by the following building blocks:

• Environment
• State
• Agent
• Action
• Step

• Reward
• Objective
• Policy
• Episode
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9 This, of course, depends on the board positions at hand. There are differences between opening, middle, and
end games.

Modeling Environments

The famous quote “Things should be as simple as possible, but no
simpler,” usually attributed to Albert Einstein, can serve as a guide‐
line for the design of environments and their APIs for RL. Like in
the context of a scientific model, an environment should capture
all relevant aspects of the phenomena to be covered by it and dis‐
miss those that are irrelevant. Sometimes, tremendous simplifica‐
tions can be made based on this approach. At other times, an
environment must represent the complete problem at hand. For
example, when playing chess, the board positions of all the pieces
are relevant.

Deep Q-Learning
What characterizes deep Q-learning (DQL) algorithms? To begin with, QL is a spe‐
cial form of RL. In that sense, all the major building blocks of RL algorithms apply to
QL algorithms as well. There are two specific characteristics of DQL algorithms.

First, DQL algorithms evaluate both the immediate reward of an agent’s action and
the delayed reward of the action. The delayed reward is estimated through an evalua‐
tion of the state that unfolds when the action is taken. The evaluation of the unfold‐
ing state is done under the assumption that all actions going forward are chosen
optimally.

In chess, it is obvious that it is by far not sufficient to evaluate the very next move. It
is rather necessary to look a few moves ahead and to evaluate different alternatives
that can ensue. A chess novice has a hard time, in general, looking just two or three
moves ahead. A chess grandmaster, on the other hand, can look as far as 20 to 30
moves ahead, as some argue.9

Second, DQL algorithms use DNNs to approximate, learn, and update the optimal
policy. For most interesting environments in RL, the mapping of states and possible
actions to values is too complex to be modeled explicitly, say, through a table or a
mathematical function. However, DNNs are known to have excellent approximation
capabilities and provide all the flexibility needed to accommodate almost any type of
state that an environment might communicate to the DQL agent.

Considering again chess as an example, it is estimated that there are more than 10100

possible moves, with illegal moves included. This compares with 1080 as an estimate
for the number of atoms in the universe. With legal moves only, there are about 1040

possible moves, which is still a pretty large number:
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In [32]: cm = 10 ** 40
         print(f'{cm:,}')
         10,000,000,000,000,000,000,000,000,000,000,000,000,000

This shows that only an approximation of the optimal policy is feasible in almost all
interesting RL cases.

Conclusions
This chapter focuses on learning through interaction with an environment. It is a nat‐
ural phenomenon observed in human beings and animals alike. Simple examples
show how an agent can learn probabilities through repeatedly betting on the outcome
of a gamble and thereby implementing Bayesian updating. For this book, RL algo‐
rithms are the most important ones. Breakthroughs related to RL and the building
blocks of RL are discussed. DQL, as a special RL algorithm, is characterized by taking
into account not only immediate rewards but also delayed rewards from taking an
action. In addition, the optimal policy is generally approximated by DNNs. Later
chapters cover the DQL algorithm in much more detail and use it extensively.
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1 See “Deep Reinforcement Learning” by DeepMind.

CHAPTER 2

Deep Q-Learning

Like a human, our agents learn for themselves to achieve successful strategies that lead
to the greatest long-term rewards. This paradigm of learning by trial and error, solely
from rewards or punishments, is known as reinforcement learning (RL).1

—DeepMind (2016)

The previous chapter introduces deep Q-learning (DQL) as a major algorithm in AI
that learns through interaction with an environment. This chapter provides some
more details about the DQL algorithm. It uses the CartPole environment from the
Gymnasium Python package to illustrate the API-based interaction with gaming
environments. It also implements a DQL agent as a self-contained Python class that
serves as a blueprint for later DQL agents applied to financial environments.

However, before the focus is turned on DQL, the chapter discusses general decision
problems in economics and finance. Dynamic programming is introduced as a solu‐
tion mechanism for dynamic decision problems. This provides the background for
the application of DQL algorithms because they can be considered to lead to approxi‐
mate solutions to dynamic programming problems.

“Decision Problems” on page 20 classifies decision problems in economics and
finance according to different characteristics. “Dynamic Programming” on page 21
focuses on a special type of decision problem: so-called finite horizon Markovian
dynamic programming problems. “Q-Learning” on page 24 outlines the major ele‐
ments of Q-learning and explains the role of deep neural networks in this context.
Finally, “CartPole as an Example” on page 26 illustrates a DQL setup by the use of the
CartPole game API and a DQL agent implemented as a Python class.
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2 The repetition rule, for example, prevents the possibility of an infinite chess game. A player can claim a draw
if pieces end up in the same board positions (that is, in the same squares) three times.

Decision Problems
In economics and finance, optimization and associated techniques play a central role.
One could almost say that finance is nothing but the systematic application of opti‐
mization techniques to problems arising in a financial context. Different types of
optimization problems can be distinguished in finance. The major differentiating cri‐
teria are as follows:

Discrete versus continuous action space
The quantities or actions to be chosen through optimization can be from a set of
finite, discrete options (optimal choice) or from a set of infinite, continuous
options (optimal control).

Static versus dynamic problems
Some problems are one-off optimization problems—these are generally called
static problems. Other problems are characterized by a typically large number of
sequential and connected optimization problems over time—these are called
dynamic problems.

Finite versus infinite horizon
Dynamic optimization problems can have a finite or infinite horizon. Playing a
game of chess generally has a finite horizon.2 Estate planning for multiple gener‐
ations of a family can be seen as a decision problem with an infinite horizon. Cli‐
mate policy might be another one.

Discrete versus continuous time
Some dynamic problems only require discrete decisions and optimizations at dif‐
ferent points in time. Chess playing is again a good example. Other dynamic
problems require continuous decisions and optimizations. Driving a car or flying
an airplane are examples of when a driver or pilot needs to continuously make
sure that appropriate decisions are made.

Given the examples discussed in Chapter 1, betting on the outcome of tossing a
biased coin is a static problem with a discrete action space. Although such a bet can
be repeated multiple times, the optimal betting strategy is independent of the previ‐
ous bet as well as the next bet. On the other hand, playing a game of chess is a
dynamic problem—with a finite horizon—because a player needs to make a sequence
of optimal decisions that are all dependent on each other. The current positions of a
player’s pieces on the chessboard depend on the player’s (and the opponent’s) previ‐
ous moves. The future move options (in the action space) depend on the current
move the player chooses.
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3 The exposition approximately follows Sundaram (1996, Chapter 11).

In summary, because the action space is finite in both cases, coin toss betting is a dis‐
crete, static optimization problem, whereas playing chess is a discrete, dynamic opti‐
mization problem with finite horizon.

Dynamic Programming
An important type of dynamic optimization problem is the finite horizon Markovian
dynamic programming problem (FHMDP). An FHMDP can formally be described by
the following tuple:3

{S ,A,T ,(rt , f t ,Φt)t =0
T }

S  is the state space of the problem with a generic element s. A is the action space of
the problem with a generic element a. T  is a positive integer and represents the finite
horizon of the problem.

For each point in time at which an action is to be chosen, t ∈ {0,1,...,T }, there are two
relevant functions and one relevant correspondence. The reward function maps a
state and an action to a real-valued reward. If an agent at time t  chooses action at  in
state st , they receive a reward of rt :

rt : S × A → ℝ

The transition function maps a state and an action to another state. This function
models the step from state st  to state st +1 when action at  is taken:

f t : S × A → S

Finally, the feasible action correspondence maps states to feasible actions. Given a
state st , the correspondence defines all feasible actions {at

1,at
2,...} for that state:

Φt : S → P(A)

The objective of an agent is to choose a plan for taking actions at each point in time
to maximize the sum of the per-period rewards over the horizon of the model. In
other words, an agent needs to solve the following optimization problem:
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max
at ,t∈{0,1,...,T }

∑
t=1

T
rt(st ,at)

subject to

{s0 = s ∈ S
st = f t -1(st -1,at -1),t = 1,...,T
at ∈ Φt(st),t = 1,...,T

What does Markovian mean in this context? It means that the transition function
only depends on the current state and the current action taken and not on the full
history of all states and actions. Formally, the following equality holds:

st = f t -1(st -1,at -1) = f t -1(st -1,st -2,...; at -1,at -2,...)

In this context, one also needs to distinguish between FHMDP problems for which
the transition function is deterministic or stochastic. For chess, it is clear that the tran‐
sition function is deterministic. On the other hand, typical computer games and all
games offered in casinos generally have stochastic elements and, as a consequence,
stochastic transition functions. If the transition function is stochastic, one usually
speaks of stochastic dynamic programming.

A Markovian policy σ is a contingency plan that specifies which action a is to be
taken if state s is observed. For an FHMDP, this implies σ : S → A with
σt(st) ∈ Φt(st). This gives the set of all feasible policies, σ ∈ Σ.

The total reward of a feasible policy σ is denoted by this equation:

W (s0,σ) = ∑
t=1

T
rt(st ,σt)

The value function V : S → ℝ is then defined by the supremum of the total reward
over all feasible policies:

V (s0) = sup
σ∈Σ

W (s0,σ)

For an optimal policy σ *, the following must hold:

W (s0,σ *) = V (s0),s0 ∈ S
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The problem of an agent faced with an FHMDP can also be interpreted as finding an
optimal policy with the previous characteristics. If an optimal strategy σ * exists, it can
be shown that the value function, in general, satisfies the so-called Bellman equation:

V t(st) = max
a∈Φt(st)

(rt(st ,a) + V t +1( f t(st ,a)))

In other words, a dynamic decision problem involving simultaneous optimization
over a combination of a potentially infinitely large number of feasible actions can be
decomposed into a sequence of static, single-step optimization problems. Duffie
(1988, p. 182), for example, summarizes:

In multi-period optimization problems, the problem of selecting actions over all peri‐
ods can be decomposed into a family of single-period problems. In each period, one
merely chooses an action maximizing the sum of the reward for that period and the
value of beginning the problem again in the following period.

In classical and modern economic and financial theory, a large number of FHMDP
problems can be found, such as these:

• Optimal growth over time
• Optimal consumption and saving over time
• Optimal portfolio allocation over time
• Dynamic hedging of options and derivatives
• Optimal execution strategies in algorithmic trading

Generally, these problems need to be modeled as FHMDP problems with stochastic
transition functions. This is because most financial quantities, such as commodity
prices, interest rates, and stock prices, are uncertain and stochastic.

In particular, when dynamic programming involves continuous time modeling and
stochastic transition functions—as is often the case in economics and finance—the
mathematical requirements are pretty high. They involve, among other things, analy‐
sis of metric spaces, measure-theoretic probability, and stochastic calculus. For an
introduction to stochastic dynamic programming in Markovian financial models,
refer to Duffie (1988) for the discrete time case and to Duffie (2001) for the continu‐
ous time case. For a comprehensive review of the required mathematical techniques
in deterministic and stochastic dynamic programming and many economic exam‐
ples, see the book by Stachurski (2009). The book by Sargent and Stachurski (2023)
also covers dynamic programming and is accompanied by both Julia and Python
code examples.
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Q-Learning
Even with the most sophisticated mathematical techniques, many interesting
FHMDPs in economics, finance, and other fields defy analytical solutions. In such
cases, using numerical methods that can approximate optimal solutions is usually the
only feasible choice. Among these numerical methods is Q-learning (QL), which we
use as a major RL technique (see also “Deep Q-Learning” on page 16).

Watkins (1989) and Watkins and Dayan (1992) are pioneering works about modern
QL. At the beginning of his Ph.D. thesis, Watkins (1989) writes:

This thesis will present a general computational approach to learning from rewards
and punishments, which may be applied to a wide range of situations in which animal
learning has been studied, as well as to many other types of learning problems.

In Watkins and Dayan (1992), the authors describe the algorithm as follows:

Q-learning (Watkins, 1989) is a form of model-free reinforcement learning. It can also
be viewed as a method of asynchronous dynamic programming (DP). It provides
agents with the capability of learning to act optimally in Markovian domains by expe‐
riencing the consequences of actions, without requiring them to build maps of the
domains….
[A]n agent tries an action at a particular state, and evaluates its consequences in terms
of the immediate reward or penalty it receives and its estimate of the value of the state
to which it is taken. By trying all actions in all states repeatedly, it learns which are best
overall, judged by long-term discounted reward. Q-learning is a primitive (Watkins,
1989) form of learning, but, as such, it can operate as the basis of far more sophistica‐
ted devices.

Consider an FHMDP as in the previous section:

{S ,A,T ,(rt , f t ,Φt)t =0
T }

In this context, the Q in QL stands for an action policy that assigns a numerical value
to each state st ∈ S  and feasible action at ∈ A. The numerical value is composed of
the immediate reward of taking action at  and the discounted delayed reward given an
optimal action at +1

*  taken in the subsequent state. Formally, this can be written as fol‐
lows (note the resemblance to the reward function):

Q : S × A → ℝ

Then, with γ ∈ (0,1  being a discount factor, Q takes on the following functional
form:

Q(st ,at) = rt(st ,at) + γ · max
a

Q(st +1,a)
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In general, the optimal action policy Q cannot be specified in analytical form, that is,
in the form of a table or mathematical function. Therefore, QL relies in general on
approximate representations of the optimal policy Q.

If a deep neural network (DNN) is used for the representation, one usually speaks of
deep Q-learning (DQL). To some extent, the use of DNNs in DQL might seem some‐
what arbitrary. However, there are strong mathematical results—for example, the
universal approximation theorem—that show the powerful approximation capabili‐
ties of DNNs. Wikipedia summarizes in this context as follows:

In the mathematical theory of artificial neural networks, the universal approximation
theorem states that a feed-forward network with a single hidden layer containing a
finite number of neurons can approximate continuous functions…. The theorem thus
states that simple neural networks can represent a wide variety of interesting functions
when given appropriate parameters; however, it does not touch upon the algorithmic
learnability of those parameters.

As with RL in general, QL is based on an agent interacting with an environment and
learning from the ensuing experiences through rewards and penalties. A QL agent
takes actions based on two different principles:

Exploitation
This refers to actions taken by the QL agent under the current optimal policy Q.

Exploration
This refers to actions taken by a QL agent that are random. The purpose is to
explore random actions and their associated values beyond what the current
optimal policy would dictate.

Usually, the QL agent is supposed to follow an ϵ - greedy strategy. In this regard, the
parameter ϵ defines the ratio with which the agent relies on exploration as compared
to exploitation. During the training of the QL agent, ϵ is generally assumed to
decrease with an increasing number of training units.

In DQL, the policy Q—that is, the DNN—is regularly updated through what is called
replay. For replay, the agent must store passed experiences (states, actions, rewards,
next states, etc.) and use, in general, relatively small batches from the memorized
experiences to retrain the DNN. In the limit—that is, the idea and “hope”—the DNN
approximates the optimal policy for the problem well enough. In most cases, an opti‐
mal policy is not achievable at all since the problem at hand is simply too complex—
such as chess is with its 1040 possible moves.
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DNNs for Approximation

The usage of DNNs in Q-learning agents is not arbitrary. The rep‐
resentation (approximation) of the optimal action policy Q gener‐
ally is a demanding task. DNNs have powerful approximation
capabilities, which explains their regular usage as the “brain” for a
Q-learning agent.

CartPole as an Example
The Gymnasium package for Python provides several environments (APIs) that are
suited to training RL agents. CartPole is a relatively simple game that requires an
agent to balance a pole on a cart by pushing the cart to the left or right. This section
illustrates the API for the game, that is, the environment, and shows how to imple‐
ment a DQL agent in Python that can learn to play the game well.

The Game Environment
The Gymnasium package is installed as follows:

pip install gymnasium

Details on the CartPole game are found in the Gymnasium documentation. The first
step in getting ready to play the game is the creation of an environment object:

In [1]: import gymnasium as gym

In [2]: env = gym.make('CartPole-v1')

This object allows interaction via simple method calls. For example, it allows us to see
how many actions are feasible (in the action space), to sample random actions, or to
get more information about the state description (in the observation space):

In [3]: env.action_space
Out[3]: Discrete(2)

In [4]: env.action_space.n  
Out[4]: 2

In [5]: [env.action_space.sample() for _ in range(10)]  
Out[5]: [1, 0, 1, 0, 0, 0, 0, 0, 0, 0]

In [6]: env.observation_space
Out[6]: Box([-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38],
         [4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38], (4,),
         float32)

In [7]: env.observation_space.shape  
Out[7]: (4,)
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Two actions, 0 and 1, are possible.

The state is described by four parameters.

The environment allows an agent to take one of two actions:

• 0: Push the cart to the left.
• 1: Push the cart to the right.

The environment models the state of the game through four physical parameters:

• Cart position
• Cart velocity
• Pole angle
• Pole angular velocity

Figure 2-1 shows a visual representation of a state of the CartPole game.

Figure 2-1. CartPole game

To play the game, the environment is first reset, leading by default to a randomized
initial state. Every action moves the environment forward one step to the next state:

In [8]: env.reset(seed=100)  
        # cart position, cart velocity, pole angle, pole angular velocity
Out[8]: (array([ 0.03349816,  0.0096554 , -0.02111368, -0.04570484],
         dtype=float32),
         {})
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In [9]: env.step(0)  
Out[9]: (array([ 0.03369127, -0.18515752, -0.02202777,  0.24024247],
         dtype=float32),
         1.0,
         False,
         False,
         {})

In [10]: env.step(1)  
Out[10]: (array([ 0.02998812,  0.01027205, -0.01722292, -0.05930644],
          dtype=float32),
          1.0,
          False,
          False,
          {})

Resets the environment, using a seed value for the random number generator

Moves the environment one step forward by taking one of two actions

The returned tuple contains the following data:

• New state
• Reward
• Terminated
• Truncated
• Additional data

The game can be played until True is returned for “terminated.” For every step, the
agent receives a reward of 1. The more steps, the higher the total reward. The objec‐
tive of an RL agent is to maximize the total reward or to achieve a minimum total
reward, for example.

A Random Agent
It is straightforward to implement an agent that only takes random actions. It cannot
be expected that the agent will achieve a high total reward on average. However,
every once in a while, such an agent might be lucky.

The following Python code implements a random agent and collects the results from
a larger number of games played:

In [11]: class RandomAgent:
             def __init__(self):
                 self.env = gym.make('CartPole-v1')
             def play(self, episodes=1):
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                 self.trewards = list()
                 for e in range(episodes):
                     self.env.reset()
                     for step in range(1, 100):
                         a = self.env.action_space.sample()
                         state, reward, done, trunc, info = self.env.step(a)
                         if done:
                             self.trewards.append(step)
                             break

In [12]: ra = RandomAgent()

In [13]: ra.play(15)

In [14]: ra.trewards
Out[14]: [18, 28, 17, 25, 16, 41, 21, 19, 22, 9, 11, 13, 15, 14, 11]

In [15]: round(sum(ra.trewards) / len(ra.trewards), 2)  
Out[15]: 18.67

Average reward for the random agent

The results illustrate that the random agent does not survive that long. The total
reward might be somewhere around 20. In rare cases, a relatively high total reward—
for example, close to 50—might be observed (called a lucky punch).

The DQL Agent
This subsection implements a DQL agent in multiple steps. This allows for a more
detailed discussion of the single elements that make up the agent. Such an approach
seems justified because this DQL agent will serve as a blueprint for the DQL agent
that will be applied to financial problems.

To get started, the following Python code first does all the required imports and cus‐
tomizes TensorFlow:

In [16]: import os
         import random
         import warnings
         import numpy as np
         import tensorflow as tf
         from tensorflow import keras
         from collections import deque
         from keras.layers import Dense
         from keras.models import Sequential

In [17]: warnings.simplefilter('ignore')
         os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
         os.environ['PYTHONHASHSEED'] = '0'

In [18]: from tensorflow.python.framework.ops import disable_eager_execution
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4 deque objects are similar to list objects but have a maximum number of elements only. Once the maximum
number is reached and a new element is added, the first element is dropped. In that sense, the deque object
implements a “first in, first out” queue. In the context of modeling the memory of a DQL agent, the deque
object mimics a human brain that remembers recent experiences better than older ones. The approach also
prevents the usage of old experiences, which were made based on a probably worse policy, for replay.

         disable_eager_execution()  

In [19]: opt = keras.optimizers.legacy.Adam(learning_rate=0.0001)  

In [20]: random.seed(100)
         tf.random.set_seed(100)

Speeds up the training of the neural network

Defines the optimizer to be used for the training

The following Python code shows the initial part of the DQLAgent class. Among other
things, it defines the major parameters and instantiates the DNN that is used for rep‐
resenting the optimal action policy:

In [21]: class DQLAgent:
             def __init__(self):
                 self.epsilon = 1.0  
                 self.epsilon_decay = 0.9975  
                 self.epsilon_min = 0.1  
                 self.memory = deque(maxlen=2000)  
                 self.batch_size = 32  
                 self.gamma = 0.9  
                 self.trewards = list()  
                 self.max_treward = 0  
                 self._create_model()  
                 self.env = gym.make('CartPole-v1')  
             def _create_model(self):
                 self.model = Sequential()
                 self.model.add(Dense(24, activation='relu', input_dim=4))
                 self.model.add(Dense(24, activation='relu'))
                 self.model.add(Dense(2, activation='linear'))
                 self.model.compile(loss='mse', optimizer=opt)

The initial ratio epsilon with which exploration is implemented

The factor by which epsilon is diminished

The minimum value for epsilon

The deque object that collects past experiences4
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The number of experiences used for replay

The factor to discount future rewards

A list object to collect total rewards

A parameter to store the maximum total reward achieved

Initiates the instantiation of the DNN

Instantiates the CartPole environment

The next part of the DQLAgent class implements the .act() and .replay() methods
for choosing an action and updating the DNN (optimal action policy), given past
experiences:

In [22]: class DQLAgent(DQLAgent):
             def act(self, state):
                 if random.random() < self.epsilon:
                     return self.env.action_space.sample()  
                 return np.argmax(self.model.predict(state)[0])  
             def replay(self):
                 batch = random.sample(self.memory, self.batch_size)  
                 for state, action, next_state, reward, done in batch:
                     if not done:
                         reward += self.gamma * np.amax(
                             self.model.predict(next_state)[0])  
                     target = self.model.predict(state)  
                     target[0, action] = reward  
                     self.model.fit(state, target, epochs=2, verbose=False)  
                 if self.epsilon > self.epsilon_min:
                     self.epsilon *= self.epsilon_decay  

Chooses a random action

Chooses an action according to the (current) optimal policy

Randomly chooses a batch of past experiences for replay

Combines the immediate and discounted future reward

Generates the values for the state-action pairs

Updates the value for the relevant state-action pair

Trains/updates the DNN to account for the updated value
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5 This is a technical requirement of TensorFlow when updating DNNs based on a single sample only.

Reduces epsilon by the epsilon_decay factor

The major elements are available to implement the core part of the DQLAgent class:
the .learn() method, which controls the interaction of the agent with the environ‐
ment and the updating of the optimal policy. The method also generates printed out‐
put to monitor the learning of the agent:

In [23]: class DQLAgent(DQLAgent):
             def learn(self, episodes):
                 for e in range(1, episodes + 1):
                     state, _ = self.env.reset()  
                     state = np.reshape(state, [1, 4])  
                     for f in range(1, 5000):
                         action = self.act(state)  
                         next_state, reward, done, trunc, _ = \
                             self.env.step(action)  
                         next_state = np.reshape(next_state, [1, 4])  
                         self.memory.append(
                             [state, action, next_state, reward, done])  
                         state = next_state  
                         if done or trunc:
                             self.trewards.append(f)  
                             self.max_treward = max(self.max_treward, f)  
                             templ = f'episode={e:4d} | treward={f:4d}'
                             templ += f' | max={self.max_treward:4d}'
                             print(templ, end='\r')
                             break
                     if len(self.memory) > self.batch_size:
                         self.replay()  
                 print()

The environment is reset.

The state object is reshaped.5

An action is chosen according to the .act() method, given the current state.

The relevant data points are collected for replay.

The state variable is updated to the current state.

Once terminated, the total reward is collected.

The maximum total reward is updated if necessary.
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Replay is initiated as soon as there are enough past experiences.

With the following Python code, the class is complete. It implements the .test()
method that allows the testing of the agent without exploration:

In [24]: class DQLAgent(DQLAgent):
             def test(self, episodes):
                 for e in range(1, episodes + 1):
                     state, _ = self.env.reset()
                     state = np.reshape(state, [1, 4])
                     for f in range(1, 5001):
                         action = np.argmax(self.model.predict(state)[0])  
                         state, reward, done, trunc, _ = self.env.step(action)
                         state = np.reshape(state, [1, 4])
                         if done or trunc:
                             print(f, end=' ')
                             break

For testing, only actions according to the optimal policy are chosen.

The DQL agent in the form of the completed DQLAgent Python class can interact with
the CartPole environment to improve its capabilities in playing the game—as meas‐
ured by the rewards achieved:

In [25]: agent = DQLAgent()

In [26]: %time agent.learn(1500)
         episode=1500 | treward= 224 | max= 500
         CPU times: user 1min 52s, sys: 21.7 s, total: 2min 14s
         Wall time: 1min 46s

In [27]: agent.epsilon
Out[27]: 0.09997053357470892

In [28]: agent.test(15)
         500 373 326 500 348 303 500 330 392 304 250 389 249 204 500

At first glance, it is clear that the DQL agent consistently outperforms the random
agent by a large margin. Therefore, luck can’t be at work. On the other hand, without
additional context, it is not clear whether the agent is a mediocre, good, or very good
one.

In the documentation for the CartPole environment, you find that the threshold for
total rewards is 475. This means that everything above 475 is considered to be good.
By default, the environment is truncated at 500, meaning that reaching that level is
considered to be a “success” for the game. However, the game can be played beyond
500 steps/rewards, which might make the training of the DQL agent more efficient.
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Q-Learning Versus Supervised Learning
At the core of DQL is a DNN that resembles those often used and seen in supervised
learning. Against this background, what are the major differences between these two
approaches in machine learning (ML)?

For starters, the objectives of the two approaches are different. In DQL, the objective
is to learn an optimal action policy that maximizes total reward (or minimizes total
penalties, for example). On the other hand, supervised learning aims at learning a
mapping between features and labels.

Secondly, in DQL, the data is generated through interaction and in a sequential fash‐
ion. The sequence of the data in general matters, like the sequence of moves in chess
matters. In supervised learning, the data set is generally given up front in the form of
(expert-)labeled data sets, and the sequence often does not matter at all. Supervised
learning, in that sense, is based on a given set of correct examples, while DQL needs to
generate appropriate data sets through interaction step-by-step.

Thirdly, in DQL, feedback generally comes delayed given an action taken now. A DQL
agent playing a game might not know until many steps later whether a current action
is reward maximizing or not. The algorithm, however, makes sure that delayed feed‐
back backpropagates in time through replay and updating of the DNN. In supervised
learning, all relevant examples exist up front, and immediate feedback is available as
to whether the algorithm gets the mapping between features and labels correct or not.

In summary, while DNNs may be at the core of both DQL and supervised learning,
the two approaches differ in fundamental ways in terms of their objectives, the data
they use, and the feedback their learning is based on.

Conclusions
Decision problems in economics and finance are manifold. One of the most impor‐
tant types is dynamic programming. This chapter classifies decision problems along
the lines of different binary characteristics (such as discrete or continuous action
space) and introduces dynamic programming as an important algorithm to solve
dynamic decision problems in discrete time.

Deep Q-learning is formalized and illustrated based on a simple game—CartPole
from the Gymnasium Python environment. The major goals of this chapter in this
regard are to illustrate the API-based interaction with an environment suited for RL
and the implementation of a DQL agent in the form of a self-contained Python class.

The next chapter develops a simple financial environment that mimics the behavior
of the CartPole environment so that the DQL agent from this chapter can learn to
play a financial prediction game.
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CHAPTER 3

Financial Q-Learning

Today’s algorithmic trading programs are relatively simple and make only limited use
of AI. This is sure to change.

—Murray Shanahan (2015)

The previous chapter shows that a deep Q-learning (DQL) agent can learn to play the
game of CartPole quite well. What about financial applications? As this chapter
shows, the agent can also learn to play a financial game that is about predicting the
future movement in a financial market. To this end, this chapter implements a
Finance environment that mimics the behavior of the CartPole environment and
trains the DQL agent from the previous chapter based on the requirements of the
Finance environment.

This chapter is brief, but it illustrates an important point: with the appropriate envi‐
ronment, DQL can be applied to financial problems basically in the same way as it is
applied to games and in other domains. “Finance Environment” on page 37 develops
step-by-step the Finance class that mimics the behavior of the CartPole class. “DQL
Agent” on page 43 slightly adjusts the DQLAgent class from “CartPole as an Example”
on page 26. The adjustments are made to reflect the new context. The DQL agent can
learn to predict future market movements with a significant margin over the baseline
accuracy of 50%. “Where the Analogy Fails” on page 45 finally discusses the major
issues of the modeling approach and the Finance class when compared, for example,
to a gaming environment such as the CartPole game.

Finance Environment
The goal in this section is to implement a Finance environment as a prediction game.
The environment uses static historical financial time series data to generate the states
of the environment and the value to be predicted by the DQL agent. The state is given
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by four floating-point numbers representing the four most recent data points in the
time series—such as normalized price or return values. The value to be predicted is
either 0 or 1. Here, 0 means that the financial time series value drops to a lower level
(“market goes down”) and 1 means that the time series value rises to a higher level
(“market goes up”).

To get started, the following Python class implements the behavior of the
env.action_space object for the generation of random actions. The DQL agent relies
on this capability in the context of exploration:

In [1]: import os
        import random

In [2]: random.seed(100)
        os.environ['PYTHONHASHSEED'] = '0'

In [3]: class ActionSpace:
            def sample(self):
                return random.randint(0, 1)

In [4]: action_space = ActionSpace()

In [5]: [action_space.sample() for _ in range(10)]
Out[5]: [0, 1, 1, 0, 1, 1, 1, 0, 0, 0]

The Finance class, which is at the core of this chapter, implements the idea of the
prediction game as described previously. It starts with the definition of important
parameters and objects:

In [6]: import numpy as np
        import pandas as pd

In [7]: class Finance:
            url = 'https://certificate.tpq.io/rl4finance.csv'  
            def __init__(self, symbol, feature,
                         min_accuracy=0.485, n_features=4):
                self.symbol = symbol  
                self.feature = feature  
                self.n_features = n_features  
                self.action_space = ActionSpace()  
                self.min_accuracy = min_accuracy  
                self._get_data()  
                self._prepare_data()  
            def _get_data(self):
                self.raw = pd.read_csv(self.url,
                        index_col=0, parse_dates=True)  

The URL for the data set to be used (which can be replaced)

The symbol for the time series to be used for the prediction game
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The type of feature to be used to define the state of the environment

The number of feature values to be provided to the agent

The ActionSpace object that is used for random action sampling

The minimum prediction accuracy required for the agent to continue with the
prediction game

The retrieval of the financial time series data from the remote source

The method call for the data preparation

The data set used in this class allows the selection of the following financial
instruments:

AAPL.O | Apple Stock
MSFT.O | Microsoft Stock
INTC.O | Intel Stock
AMZN.O | Amazon Stock
GS.N   | Goldman Sachs Stock
SPY    | SPDR S&P 500 ETF Trust
.SPX   | S&P 500 Index
.VIX   | VIX Volatility Index
EUR=   | EUR/USD Exchange Rate
XAU=   | Gold Price
GDX    | VanEck Vectors Gold Miners ETF
GLD    | SPDR Gold Trust

A key method of the Finance class is the one for preparing the data for both the state
description (features) and the prediction itself (labels). The state data is provided in
normalized form, which is known to improve the performance of deep neural net‐
works (DNNs). From the implementation, it is obvious that the financial time series
data is used in a static, nonrandom way. When the environment is reset to the initial
state, it is always the same initial state:

In [8]: class Finance(Finance):
            def _prepare_data(self):
                self.data = pd.DataFrame(self.raw[self.symbol]).dropna() 
                self.data['r'] = np.log(self.data / self.data.shift(1)) 
                self.data['d'] = np.where(self.data['r'] > 0, 1, 0) 
                self.data.dropna(inplace=True) 
                self.data_ = (self.data - self.data.mean()) / self.data.std() 
            def reset(self):
                self.bar = self.n_features 
                self.treward = 0 
                state = self.data_[self.feature].iloc[
                    self.bar - self.n_features:self.bar].values 
                return state, {}
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Selects the relevant time series data from the DataFrame object

Generates a log return time series from the price time series

Generates the binary, directional data to be predicted from the log returns

Gets rid of all those rows in the DataFrame object that contain NaN (“not a num‐
ber”) values

Applies Gaussian normalization to the data

Sets the current bar (position in the time series) to the value for the number of
feature values

Resets the total reward value to zero

Generates the initial state object to be returned by the method

The following Python code finally implements the .step() method, which moves the
environment from one state to the next or signals that the game is terminated. One
key idea is to check for the current prediction accuracy of the agent and to compare it
to a minimum required accuracy. The purpose is to avoid a situation where the agent
simply plays along even if its current performance is much worse than, say, that of a
random agent:

In [9]: class Finance(Finance):
            def step(self, action):
                if action == self.data['d'].iloc[self.bar]: 
                    correct = True
                else:
                    correct = False
                reward = 1 if correct else 0 
                self.treward += reward 
                self.bar += 1 
                self.accuracy = self.treward / (self.bar - self.n_features)  
                if self.bar >= len(self.data): 
                    done = True
                elif reward == 1: 
                    done = False
                elif (self.accuracy < self.min_accuracy) and (self.bar > 15): 
                    done = True
                else:
                    done = False
                next_state = self.data_[self.feature].iloc[
                    self.bar - self.n_features:self.bar].values 
                return next_state, reward, done, False, {}
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Checks whether the prediction (“action”) is correct.

Assigns a reward of +1 or 0, depending on correctness.

Increases the total reward accordingly.

The bar value is increased to move the environment forward on the time series.

The current accuracy is calculated.

Checks whether the end of the data set is reached.

Checks whether the prediction is correct.

Checks whether the current accuracy is above the minimum required accuracy.

Generates the next state object to be returned by the method.

This completes the Finance class and allows the instantiation of objects based on the
class, as in the following Python code. The code also lists the available symbols in the
financial data set used. It further illustrates that either normalized price or log returns
data can be used to describe the state of the environment:

In [10]: fin = Finance(symbol='EUR=', feature='EUR=')  

In [11]: list(fin.raw.columns)  
Out[11]: ['AAPL.O',
          'MSFT.O',
          'INTC.O',
          'AMZN.O',
          'GS.N',
          '.SPX',
          '.VIX',
          'SPY',
          'EUR=',
          'XAU=',
          'GDX',
          'GLD']

In [12]: fin.reset()
         # four lagged, normalized price points
Out[12]: (array([2.74844931, 2.64643904, 2.69560062, 2.68085214]), {})

In [13]: fin.action_space.sample()
Out[13]: 1

In [14]: fin.step(fin.action_space.sample())
Out[14]: (array([2.64643904, 2.69560062, 2.68085214, 2.63046153]), 0, False,
          False, {})
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In [15]: fin = Finance('EUR=', 'r')  

In [16]: fin.reset()
         # four lagged, normalized log returns
Out[16]: (array([-1.19130476, -1.21344494,  0.61099805, -0.16094865]), {})

Specifies that the feature type is normalized prices

Shows the available symbols in the data set used

Specifies that the feature type is normalized returns

To illustrate the interaction with the Finance environment, a random agent can again
be considered. The total rewards that the agent achieves are, of course, quite low.
They are below 20 on average. This needs to be compared with the length of the data
set, which has more than 2,500 data points. In other words, a total reward of 2,500 or
more is possible:

In [17]: class RandomAgent:
             def __init__(self):
                 self.env = Finance('EUR=', 'r')
             def play(self, episodes=1):
                 self.trewards = list()
                 for e in range(episodes):
                     self.env.reset()
                     for step in range(1, 100):
                         a = self.env.action_space.sample()
                         state, reward, done, trunc, info = self.env.step(a)
                         if done:
                             self.trewards.append(step)
                             break

In [18]: ra = RandomAgent()

In [19]: ra.play(15)

In [20]: ra.trewards
Out[20]: [17, 13, 17, 12, 12, 12, 13, 23, 31, 13, 12, 15]

In [21]: round(sum(ra.trewards) / len(ra.trewards), 2)  
Out[21]: 15.83

In [22]: len(fin.data)  
Out[22]: 2607

Average reward for the random agent

Length of the data set, which equals roughly the maximum total reward
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DQL Agent
Equipped with the Finance environment, it is straightforward to let the DQL agent
(the DQLAgent class from “The DQL Agent” on page 29) play the financial prediction
game.

The following Python code takes care of the required imports and configurations:

In [23]: import os
         import random
         import warnings
         import numpy as np
         import tensorflow as tf
         from tensorflow import keras
         from collections import deque
         from keras.layers import Dense
         from keras.models import Sequential

In [24]: warnings.simplefilter('ignore')
         os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'

In [25]: from tensorflow.python.framework.ops import disable_eager_execution
         disable_eager_execution()

In [26]: opt = keras.optimizers.legacy.Adam(learning_rate=0.0001)

For the sake of completeness, the following code shows the DQLAgent class as a whole.
It is basically the same code as in “The DQL Agent” on page 29, with some minor
adjustments for the context of this chapter:

In [27]: class DQLAgent:
             def __init__(self, symbol, feature, min_accuracy, n_features=4):
                 self.epsilon = 1.0
                 self.epsilon_decay = 0.9975
                 self.epsilon_min = 0.1
                 self.memory = deque(maxlen=2000)
                 self.batch_size = 32
                 self.gamma = 0.5
                 self.trewards = list()
                 self.max_treward = 0
                 self.n_features = n_features
                 self._create_model()
                 self.env = Finance(symbol, feature,
                             min_accuracy, n_features)  
             def _create_model(self):
                 self.model = Sequential()
                 self.model.add(Dense(24, activation='relu',
                                      input_dim=self.n_features))
                 self.model.add(Dense(24, activation='relu'))
                 self.model.add(Dense(2, activation='linear'))
                 self.model.compile(loss='mse', optimizer=opt)
             def act(self, state):
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                 if random.random() < self.epsilon:
                     return self.env.action_space.sample()
                 return np.argmax(self.model.predict(state)[0])
             def replay(self):
                 batch = random.sample(self.memory, self.batch_size)
                 for state, action, next_state, reward, done in batch:
                     if not done:
                         reward += self.gamma * np.amax(
                             self.model.predict(next_state)[0])
                     target = self.model.predict(state)
                     target[0, action] = reward
                     self.model.fit(state, target, epochs=1, verbose=False)
                 if self.epsilon > self.epsilon_min:
                     self.epsilon *= self.epsilon_decay
             def learn(self, episodes):
                 for e in range(1, episodes + 1):
                     state, _ = self.env.reset()
                     state = np.reshape(state, [1, self.n_features])
                     for f in range(1, 5000):
                         action = self.act(state)
                         next_state, reward, done, trunc, _ = \
                             self.env.step(action)
                         next_state = np.reshape(next_state,
                                                 [1, self.n_features])
                         self.memory.append(
                             [state, action, next_state, reward, done])
                         state = next_state
                         if done:
                             self.trewards.append(f)
                             self.max_treward = max(self.max_treward, f)
                             templ = f'episode={e:4d} | treward={f:4d}'
                             templ += f' | max={self.max_treward:4d}'
                             print(templ, end='\r')
                             break
                     if len(self.memory) > self.batch_size:
                         self.replay()
                 print()
             def test(self, episodes):
                 ma = self.env.min_accuracy  
                 self.env.min_accuracy = 0.5  
                 for e in range(1, episodes + 1):
                     state, _ = self.env.reset()
                     state = np.reshape(state, [1, self.n_features])
                     for f in range(1, 5001):
                         action = np.argmax(self.model.predict(state)[0])
                         state, reward, done, trunc, _ = self.env.step(action)
                         state = np.reshape(state, [1, self.n_features])
                         if done:
                             tmpl = f'total reward={f} | '
                             tmpl += f'accuracy={self.env.accuracy:.3f}'
                             print(tmpl)
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                             break
                 self.env.min_accuracy = ma  

Defines the Finance environment object as a instance attribute

Captures and resets the original minimum accuracy for the Finance

environment

Redefines the minimum accuracy for testing purposes

As the following Python code shows, the DQLAgent learns to predict the next market
movement with an accuracy of significantly above 50%:

In [28]: random.seed(250)
         tf.random.set_seed(250)

In [29]: agent = DQLAgent('EUR=', 'r', 0.495, 4)

In [30]: %time agent.learn(250)
         episode= 250 | treward=  12 | max=2603
         CPU times: user 18.6 s, sys: 3.15 s, total: 21.8 s
         Wall time: 18.2 s

In [31]: agent.test(5)  
         total reward=2603 | accuracy=0.525
         total reward=2603 | accuracy=0.525
         total reward=2603 | accuracy=0.525
         total reward=2603 | accuracy=0.525
         total reward=2603 | accuracy=0.525

Test results are all the same, given the static data set.

Where the Analogy Fails
The Finance environment as introduced in “Finance Environment” on page 37 has
one major goal: to exactly replicate the API of the CartPole environment. This goal is
relatively easily achieved, allowing the DQL agent from the previous chapter to learn
the financial prediction game. This is an accomplishment and insight in and of itself:
a DQL agent can learn to play different games—even a large number of them.

However, the Finance environment brings two major, intertwined drawbacks with it:
limited data and no impact of actions. This section discusses them in some detail.

Limited Data
The first drawback is that the environment is based on a static, deterministic data set.
Whenever the environment is reset, it starts at the same initial state and moves step-
by-step through the same states afterward, independent of the action (prediction) of
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the DQL agent. This is in stark contrast to the CartPole environment, which by
default generates a random initial state. Given the random initial state, the whole set
of ensuing states can be considered to be a sequence of random states since they
always differ, given a new random initial state.

Here, it is important to note that the transition from one state to another is determin‐
istic. However, all sequences of states will differ due to the initial state being random.
In a certain sense, the sequence of states as a whole inherits its randomness from the
initial state.

Working with static data sets severely limits the training data. Although the data set
has more than 2,500 data points, it is just one data set. The situation is as if a rein‐
forcement learning (RL) agent were learning to play chess based only on a single his‐
torical game, which it could go through over and over again. It is also comparable to
a student preparing for an upcoming mathematics exam with only one mathematics
problem available to study. Too little data is not only a problem in RL, but obviously
in machine learning and deep learning in general.

Another thought should be outlined here as well. Even if one adds other historical
financial time series to the training data set or if one uses, say, historical intraday data
instead of end-of-day data, the problem of limited financial data persists. It might not
be as severe as in the context of the Finance environment, but the problem still plays
an important role.

Too Little Data

The success or failure of a DQL agent often depends on the avail‐
ability of large amounts of or even infinite data. When playing
board games such as chess, for example, the available data (experi‐
ences made) is practically infinite because an agent can play a very
large number of games against itself. Financial data in and of itself
is limited by definition.

No Impact
In RL with DQL agents, it is often assumed or expected that the next state of an envi‐
ronment depends on the action chosen by the agent, at least to some extent. In chess,
it is clear that the next board position depends on the move of the player or the DQL
agent trying to learn the game. In CartPole, the agent influences all four parameters
of the next state—cart position, cart velocity, pole angle, and angular velocity—by
pushing the cart to the left or right.

In The Book of Why, Pearl and Mackenzie (2018) explain that there are three layers
from which one can learn and formulate causal relationships. The first layer is data
that can be observed, processed, and analyzed. For example, analyzing data might
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1 For the definitions of different types of AI, see, for example, Hilpisch (2020, Chapter 2).

lead one to insights concerning the correlation between two related quantities. But, as
is often pointed out, correlation is not necessarily causation.

To get deeper insights into what might really cause a phenomenon or an observation,
one needs the other two layers. The second layer is about interventions. In the real
world, one can in general expect that an action has some impact. Whether I exercise
regularly or not should make a difference in the evolution of my weight and health,
for example. This is comparable to the CartPole environment, in which every action
has a direct impact.

In the Finance environment, the next state is completely independent of the predic‐
tion (action) of the DQL agent. In this context, it might be acceptable that way,
because, after all, what impact shall a prediction of a DQL agent (or a human analyst)
have on the evolution of the EUR/USD exchange rate or the Apple share price? In
finance, it is routinely assumed that agents are “infinitesimally small” and therefore
cannot impact financial markets through trading or other financial decisions.

In reality, of course, large financial institutions often have a significant influence on
financial markets, for example, when executing a large order or block trade. In such a
context, feedback effects of actions would be highly relevant for the learning of opti‐
mal execution strategies, for instance.

Going one level higher and recalling what RL is about at its core, it should also be
clear that the consequences of actions should play an important role. How should
“reinforcement” otherwise be happening if the consequences of actions have no
effect? The situation is comparable to a student receiving the same feedback from
their parents no matter whether they get an A or D grade on a mathematics exam.
For a comprehensive discussion about the role the consequences of actions play for
human beings and animals alike, see the book The Science of Consequences by
Schneider (2012).

The third layer is about counterfactuals. This implies that an agent possesses the
capabilities to imagine hypothetical states for an environment and to hypothetically
simulate the impact that a hypothetical action might have. This probably cannot be
expected entirely from a DQL agent as discussed in this book. It might be something
for which an artificial general intelligence (AGI) might be required.1 On a simpler
level, one could interpret the simulation of a hypothetical future action that is opti‐
mal as coming up with a counterfactual. The DQL agent does not, however, hypothe‐
size about possible states that it has not experienced before.
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No Impact

In this book, it is usually assumed that a DQL agent’s actions have
no direct effect on the next state. A state is given, and, independent
of which action the agent chooses, the next state is revealed to the
agent. This holds for static historical data sets or those generated in
Part II based on adding noise, leveraging simulation techniques, or
using generative adversarial networks.

Conclusions
This chapter develops a simple financial environment that allows the DQL agent
from the previous chapter (with some minor adjustments) to learn a financial predic‐
tion game. The environment is based on real historical financial price data. The DQL
agent learns to predict the future movement of the market (the price of the financial
instrument chosen) with an accuracy that is significantly above the 50% baseline
level.

While the financial environment developed in this chapter mimics the major ele‐
ments of the API as provided by the CartPole environment, it lacks two important
elements: the training data set is limited to a single, static time series only, and the
actions of the DQL agents do not impact the state of the environment.

Part II focuses on the major problem of limited financial data and introduces data
augmentation approaches that allow you to generate a basically unlimited number of
financial time series.
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PART II

Data Augmentation

The second part of the book covers concepts about and approaches to generating
data for financial deep Q-learning:

• Chapter 4 implements data generation approaches based on Monte Carlo simu‐
lation (MCS). One approach is to add white noise to an existing financial time
series. Another one is to simulate financial time series data based on a financial
model (a stochastic differential equation).

• Chapter 5 shows how to use generative adversarial networks (GANs) from AI, or
more specifically, from deep learning (DL), to generate financial time series data
that is consistent with and statistically indistinguishable from the target financial
time series. Such a target time series can be the historical return series for a share
of a company stock (think Apple shares) or historical foreign exchange quotes
(think the EUR/USD exchange rate).





CHAPTER 4

Simulated Data

It is often said that data is the new oil, but this analogy is not quite right. Oil is a finite
resource that must be extracted and refined, whereas data is an infinite resource that is
constantly being generated and refined.

—Halevy et al. (2009)

A major drawback of the financial environment as introduced in the previous chapter
is that it relies by default on a single, historical financial time series. This is a too-
limited data set with which to train a deep Q-learning (DQL) agent. It is like training
an AI on a single game of chess and expecting it to perform well overall in chess.

This chapter introduces simulation-based approaches to augmenting the available
data for the training of a DQL agent. The first approach, as introduced in “Noisy
Time Series Data” on page 52, is to add random noise to a static financial time series.
Although it is commonly agreed upon that financial time series data generally already
contains noise—as compared to price movements or returns that are information
induced—the idea is to train the agent on a large number of similar time series in the
hope that it learns to distinguish information from noise.

The second approach, discussed in “Simulated Time Series Data” on page 56, is to
generate financial time series data through simulation under certain constraints and
assumptions. In general, a stochastic differential equation is assumed for the dynam‐
ics of the time series. The time series is then simulated given a discretization scheme
and appropriate boundary conditions. This is one of the core numerical approaches
used in computational finance to price financial derivatives or to manage financial
risks, for example (see Glasserman [2004]).

Both data augmentation methods discussed in this chapter make it possible to gener‐
ate an unlimited amount of training, validation, and test data for reinforcement
learning.
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Noisy Time Series Data
This section adjusts the first Finance environment from “Finance Environment” on
page 37 to add white noise, which is normally distributed data, to the original finan‐
cial time series. First, add the helper class for the action space:

In [1]: class ActionSpace:
            def sample(self):
                return random.randint(0, 1)

The new NoisyData environment class only requires a few adjustments compared
with the original Finance class. In the following Python code, two parameters are
added to the initialization method:

In [2]: import numpy as np
        import pandas as pd
        from numpy.random import default_rng  

In [3]: rng = default_rng(seed=100)  

In [4]: class NoisyData:
            url = 'https://certificate.tpq.io/findata.csv'
            def __init__(self, symbol, feature, n_features=4,
                         min_accuracy=0.485, noise=True,
                         noise_std=0.001):
                self.symbol = symbol
                self.feature = feature
                self.n_features = n_features
                self.noise = noise  
                self.noise_std = noise_std  
                self.action_space = ActionSpace()
                self.min_accuracy = min_accuracy
                self._get_data()
                self._prepare_data()
            def _get_data(self):
                self.raw = pd.read_csv(self.url,
                        index_col=0, parse_dates=True)

The random number generator is imported and initialized.

The flag that specifies whether noise is added or not.

The noise level to be used when adjusting the data; it is to be given in % of the
price level.

The following part of the Python class code is the most important one. It is where the
noise is added to the original time series data:

In [5]: class NoisyData(NoisyData):
            def _prepare_data(self):
                self.data = pd.DataFrame(self.raw[self.symbol]).dropna()
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                if self.noise:
                    std = self.data.mean() * self.noise_std  
                    self.data[self.symbol] = (self.data[self.symbol] +
                        rng.normal(0, std, len(self.data)))  
                self.data['r'] = np.log(self.data / self.data.shift(1))
                self.data['d'] = np.where(self.data['r'] > 0, 1, 0)
                self.data.dropna(inplace=True)
                ma, mi = self.data.max(), self.data.min()  
                self.data_ = (self.data - mi) / (ma - mi)  
            def reset(self):
                if self.noise:
                    self._prepare_data()  
                self.bar = self.n_features
                self.treward = 0
                state = self.data_[self.feature].iloc[
                    self.bar - self.n_features:self.bar].values
                return state, {}

The standard deviation for the noise is calculated in absolute terms.

The white noise is added to the time series data.

The features data is normalized through min-max scaling.

A new noisy time series data set is generated.

Information Versus Noise

Generally, it is assumed that financial time series data includes a
certain amount of noise already. Investopedia defines noise as fol‐
lows: “Noise refers to information or activity that confuses or mis‐
represents genuine underlying trends.” In this section, we take the
historical price series as given and actively add noise to it. The idea
is that a DQL agent learns about the fundamental price and/or
return trends embodied by the historical data set.

The final part of the Python class, the .step() method, can remain unchanged:

In [6]: class NoisyData(NoisyData):
            def step(self, action):
                if action == self.data['d'].iloc[self.bar]:
                    correct = True
                else:
                    correct = False
                reward = 1 if correct else 0
                self.treward += reward
                self.bar += 1
                self.accuracy = self.treward / (self.bar - self.n_features)
                if self.bar >= len(self.data):
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                    done = True
                elif reward == 1:
                    done = False
                elif (self.accuracy < self.min_accuracy and
                      self.bar > self.n_features + 15):
                    done = True
                else:
                    done = False
                next_state = self.data_[self.feature].iloc[
                    self.bar - self.n_features:self.bar].values
                return next_state, reward, done, False, {}

Every time the financial environment is reset, a new time series is created by adding
noise to the original time series. The following Python code illustrates this
numerically:

In [7]: fin = NoisyData(symbol='EUR=', feature='EUR=',
                        noise=True, noise_std=0.005)

In [8]: fin.reset()  
Out[8]: (array([0.79295659, 0.81097879, 0.78840972, 0.80597193]), {})

In [9]: fin.reset()  
Out[9]: (array([0.80642276, 0.77840938, 0.80096369, 0.76938581]), {})

In [10]: fin = NoisyData('EUR=', 'r', n_features=4,
                         noise=True, noise_std=0.005)

In [11]: fin.reset()  
Out[11]: (array([0.54198375, 0.30674865, 0.45688528, 0.52884033]), {})

In [12]: fin.reset()  
Out[12]: (array([0.37967631, 0.40190291, 0.49196183, 0.47536065]), {})

Different initial states for the normalized price data

Different initial states for the normalized returns data

Finally, the following code visualizes several noisy time series data sets (see
Figure 4-1):

In [13]: from pylab import plt, mpl
         plt.style.use('seaborn-v0_8')
         mpl.rcParams['figure.dpi'] = 300
         mpl.rcParams['savefig.dpi'] = 300
         mpl.rcParams['font.family'] = 'serif'

In [14]: import warnings
         warnings.simplefilter('ignore')

In [15]: for _ in range(5):
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             fin.reset()
             fin.data[fin.symbol].loc['2022-7-1':].plot(lw=0.75, c='b')

Figure 4-1. Noisy time series data for half a year

Using the new type of environment, the DQL agent—see the Python class in
“DQLAgent Python Class” on page 64—can now be trained with a new, noisy data set
for each episode. As the following Python code shows, the agent learns to distinguish
between information (original movements) and the noisy components quite well:

In [16]: %run dqlagent.py

In [17]: os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'

In [18]: agent = DQLAgent(fin.symbol, fin.feature, fin.n_features, fin)

In [19]: %time agent.learn(250)
         episode= 250 | treward=   8.00 | max=1441.00
         CPU times: user 27.3 s, sys: 3.92 s, total: 31.2 s
         Wall time: 26.9 s

In [20]: agent.test(5)
         total reward=2604 | accuracy=0.601
         total reward=2604 | accuracy=0.590
         total reward=2604 | accuracy=0.597
         total reward=2604 | accuracy=0.593
         total reward=2604 | accuracy=0.617
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1 For more details on MCS with Python, see Chapter 12 of Hilpisch (2018). The Vasicek model with propor‐
tional volatility is also called the Brennan-Schwartz model. It dates back to the Brennan and Schwartz (1980)
paper.

Simulated Time Series Data
In “Noisy Time Series Data” on page 52, a historical financial time series is adjusted
by adding white noise to it. Here the financial time series itself is simulated under
suitable assumptions. Both approaches have in common that they allow the genera‐
tion of an infinite number of different paths. However, using the Monte Carlo simula‐
tion (MCS) approach in this section leads to quite different paths in general that only,
on average, show desired properties—such as a certain drift or a certain volatility.

In the following, a stochastic process according to Vasicek (1977) is simulated. Origi‐
nally used to model the stochastic evolution of interest rates, it allows the simulation
of trending or mean-reverting financial time series. The Vasicek model with propor‐
tional volatility is described through the following stochastic differential equation:1

d xt = κ(θ - xt)dt + σxtdZt

The variables and parameters have the following meanings: xt  is the process level at
date t, κ is the mean-reversion factor, θ is the long-term mean of the process, and σ is
the constant volatility parameter for Zt , which is a standard Brownian motion.

For the simulations, an Euler-Maruyama discretization scheme is used (with
s = t - Δt  and zt  being standard normal):

xt = xs + κ(θ - xs)Δt + σxs Δtzt

The Simulation class implements a financial environment that relies on the simula‐
tion of the stochastic process previously mentioned. The following Python code
shows the initialization part of the class:

In [21]: class Simulation:
             def __init__(self, symbol, feature, n_features,
                          start, end, periods,
                          min_accuracy=0.525, x0=100,
                          kappa=1, theta=100, sigma=0.2,
                          normalize=True, new=False):
                 self.symbol = symbol
                 self.feature = feature
                 self.n_features = n_features
                 self.start = start  
                 self.end = end  
                 self.periods = periods  
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                 self.x0 = x0  
                 self.kappa = kappa  
                 self.theta = theta  
                 self.sigma = sigma  
                 self.min_accuracy = min_accuracy  
                 self.normalize = normalize  
                 self.new = new  
                 self.action_space = ActionSpace()
                 self._simulate_data()
                 self._prepare_data()

The start date for the simulation

The end date for the simulation

The number of periods to be simulated

The model parameters for the simulation

The minimum accuracy required to continue

The parameter indicating whether normalization is applied to the data or not

The parameter indicating whether a new simulation is initiated for every episode
or not

The following Python code shows the core method of the class. It implements the
MCS for the stochastic process:

In [22]: import math
         class Simulation(Simulation):
             def _simulate_data(self):
                 index = pd.date_range(start=self.start,
                             end=self.end, periods=self.periods)
                 x = [self.x0]  
                 dt = (index[-1] - index[0]).days / 365 / self.periods  
                 for t in range(1, len(index)):
                     x_ = (x[t - 1] + self.kappa * (self.theta - x[t - 1]) * dt
                           + x[t - 1] * self.sigma * math.sqrt(dt) *
                           random.gauss(0, 1))  
                     x.append(x_)  

                 self.data = pd.DataFrame(x, columns=[self.symbol],
                                          index=index)  

The initial value of the process (the boundary condition).

The length of the time interval, given the one-year horizon and the number of
steps.
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The Euler-Maruyama discretization scheme for the simulation itself.

The simulated value is appended to the list object.

The simulated process is transformed into a DataFrame object.

Data preparation is taken care of by the following code:

In [23]: class Simulation(Simulation):
             def _prepare_data(self):
                 self.data['r'] = np.log(self.data / self.data.shift(1))  
                 self.data.dropna(inplace=True)
                 if self.normalize:
                     self.mu = self.data.mean()  
                     self.std = self.data.std()  
                     self.data_ = (self.data - self.mu) / self.std  
                 else:
                     self.data_ = self.data.copy()
                 self.data['d'] = np.where(self.data['r'] > 0, 1, 0)  
                 self.data['d'] = self.data['d'].astype(int)  

Derives the log returns for the simulated process

Applies Gaussian normalization to the data

Derives the directional values from the log returns

The following methods are helper methods and allow you, for example, to reset the
environment:

In [24]: class Simulation(Simulation):
             def _get_state(self):
                 return self.data_[self.feature].iloc[self.bar -
                                         self.n_features:self.bar]  
             def seed(self, seed):
                 random.seed(seed)  
                 tf.random.set_seed(seed)  
             def reset(self):
                 self.treward = 0
                 self.accuracy = 0
                 self.bar = self.n_features
                 if self.new:
                     self._simulate_data()
                     self._prepare_data()
                 state = self._get_state()
                 return state.values, {}

Returns the current set of feature values

Fixes the seed for different random number generators
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The final method .step() is the same as for the NoisyData class:

In [25]: class Simulation(Simulation):
             def step(self, action):
                 if action == self.data['d'].iloc[self.bar]:
                     correct = True
                 else:
                     correct = False
                 reward = 1 if correct else 0
                 self.treward += reward
                 self.bar += 1
                 self.accuracy = self.treward / (self.bar - self.n_features)
                 if self.bar >= len(self.data):
                     done = True
                 elif reward == 1:
                     done = False
                 elif (self.accuracy < self.min_accuracy and self.bar > 25):
                     done = True
                 else:
                     done = False
                 next_state = self.data_[self.feature].iloc[
                     self.bar - self.n_features:self.bar].values
                 return next_state, reward, done, False, {}

With the complete Simulation class, different processes can be simulated. The next
code snippet uses three different sets of parameters:

Baseline
No volatility and trending (long-term mean > initial value)

Trend
Volatility and trending (long-term mean > initial value)

Mean-reversion
Volatility and mean-reverting (long-term mean = initial value)

Figure 4-2 shows the simulated processes graphically:

In [26]: sym = 'EUR='

In [27]: env_base = Simulation(sym, sym, 5, start='2024-1-1', end='2025-1-1',
                          periods=252, x0=1, kappa=1, theta=1.1, sigma=0.0,
                          normalize=True)  
         env_base.seed(100)

In [28]: env_trend = Simulation(sym, sym, 5, start='2024-1-1', end='2025-1-1',
                          periods=252, x0=1, kappa=1, theta=2, sigma=0.1,
                          normalize=True)  
         env_trend.seed(100)

In [29]: env_mrev = Simulation(sym, sym, 5, start='2024-1-1', end='2025-1-1',
                          periods=252, x0=1, kappa=1, theta=1, sigma=0.1,
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2 The careful observer will notice that the three processes do not start at exactly the same point on the graph.
This is because the initial value gets “lost” after the calculation of the log returns and the cleanup of the Data
Frame object.

                          normalize=True)  
         env_mrev.seed(100)

In [30]: env_mrev.data[sym].iloc[:3]
Out[30]: 2024-01-02 10:59:45.657370517    1.004236
         2024-01-03 21:59:31.314741035    1.009752
         2024-01-05 08:59:16.972111553    1.011010
         Name: EUR=, dtype: float64

In [31]: env_base.data[sym].plot(figsize=(10, 6), label='baseline', style='r')
         env_trend.data[sym].plot(label='trend', style='b:')
         env_mrev.data[sym].plot(label='mean-reversion', style='g--')
         plt.legend();

The baseline case

The trend case

The mean-reversion case

Figure 4-2. The simulated processes2
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Model Parameter Choice

The Vasicek (1977) model provides a certain degree of flexibility to
simulate stochastic processes with different characteristics. How‐
ever, in practical applications, the parameters would not be chosen
arbitrarily but rather derived—through optimization methods—
from market-observed data. This procedure is generally called
model calibration and has a long tradition in computational
finance. See, for example, Hilpisch (2015) for more details.

By default, resetting the Simulation environment generates a new simulated process,
as Figure 4-3 illustrates:

In [32]: sim = Simulation(sym, 'r', 4, start='2024-1-1', end='2028-1-1',
                          periods=2 * 252, min_accuracy=0.485, x0=1,
                          kappa=2, theta=2, sigma=0.15,
                          normalize=True, new=True)
         sim.seed(100)

In [33]: for _ in range(10):
             sim.reset()
             sim.data[sym].plot(figsize=(10, 6), lw=1.0, c='b');

Figure 4-3. Multiple simulated, trending processes

The DQLAgent from “DQLAgent Python Class” on page 64 works with this environ‐
ment in the same way it worked with the NoisyData environment in the previous sec‐
tion. The following example uses the parametrization from before for the Simulation
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environment, which is a trending case. The agent learns quite well to predict the
future directional movement:

In [34]: agent = DQLAgent(sim.symbol, sim.feature,
                          sim.n_features, sim, lr=0.0001)

In [35]: %time agent.learn(500)
         episode= 500 | treward= 265.00 | max= 286.00
         CPU times: user 42.1 s, sys: 5.87 s, total: 47.9 s
         Wall time: 40.1 s

In [36]: agent.test(5)
         total reward= 499 | accuracy=0.547
         total reward= 499 | accuracy=0.515
         total reward= 499 | accuracy=0.561
         total reward= 499 | accuracy=0.533
         total reward= 499 | accuracy=0.549

The next example assumes a mean-reverting case, in which the DQLAgent is not able
to predict the future directional movements as well as before. It seems that learning a
trend might be easier than learning from simulated mean-reverting processes:

In [37]: sim = Simulation(sym, 'r', 4, start='2024-1-1', end='2028-1-1',
                          periods=2 * 252, min_accuracy=0.6, x0=1,
                          kappa=1.25, theta=1, sigma=0.15,
                          normalize=True, new=True)
         sim.seed(100)

In [38]: agent = DQLAgent(sim.symbol, sim.feature,
                          sim.n_features, sim, lr=0.0001)

In [39]: %time agent.learn(500)
         episode= 500 | treward=  12.00 | max=  70.00
         CPU times: user 17.8 s, sys: 2.66 s, total: 20.4 s
         Wall time: 16.3 s

In [40]: agent.test(5)
         total reward= 499 | accuracy=0.487
         total reward= 499 | accuracy=0.495
         total reward= 499 | accuracy=0.511
         total reward= 499 | accuracy=0.487
         total reward= 499 | accuracy=0.449

Conclusions
The addition of white noise to a historical financial time series allows, in principle,
the generation of an unlimited number of data sets to train a DQL agent. Varying the
degree of noise (i.e., the standard deviation) may cause the adjusted time series data
to be close to or very different from the original time series. In turn, this can make it
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3 For details, numerical techniques, and Python code examples in the context of financial model calibration, see
Hilpisch (2015).

easier or more difficult for the DQL agent to learn to distinguish information from
the added noise.

Simulation approaches were introduced to finance long before the widespread adop‐
tion of computers in the industry. Boyle (1977) is considered the seminal article in
this regard. Glasserman (2004) provides a comprehensive overview of MCS tech‐
niques for finance.

Using MCS for stochastic processes allows the simulation of trending and mean-
reverting processes. Typical trending financial time series are stock index levels or
individual stock prices. Typical mean-reverting financial time series are foreign
exchange (FX) rates or commodity prices.

In this chapter, the parameters for the simulation are assumed “out-of-the-blue.” In a
more realistic setting, appropriate parameter values could be found, for example,
through the calibration of the Vasicek (1977) model to the prices of liquidly traded
options—an approach with a long tradition in computational finance.3

The examples in this chapter show that the DQLAgent can more easily learn about
trending time series than about mean-reverting ones. The next chapter turns our
attention to generative approaches to the creation of synthetic time series data based
on neural networks.
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DQLAgent Python Class
The following Python code is from the dqlagent.py module and contains the
DQLAgent class used in this chapter:

#
# Deep Q-Learning Agent
#
# (c) Dr. Yves J. Hilpisch
# Reinforcement Learning for Finance
#

import os
import random
import warnings
import numpy as np
import tensorflow as tf
from tensorflow import keras
from collections import deque
from keras.layers import Dense, Flatten
from keras.models import Sequential

warnings.simplefilter('ignore')
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'

from tensorflow.python.framework.ops import disable_eager_execution
disable_eager_execution()

opt = keras.optimizers.legacy.Adam

class DQLAgent:
    def __init__(self, symbol, feature, n_features, env, hu=24, lr=0.001):
        self.epsilon = 1.0
        self.epsilon_decay = 0.9975
        self.epsilon_min = 0.1
        self.memory = deque(maxlen=2000)
        self.batch_size = 32
        self.gamma = 0.5
        self.trewards = list()
        self.max_treward = -np.inf
        self.n_features = n_features
        self.env = env
        self.episodes = 0
        self._create_model(hu, lr)
        
    def _create_model(self, hu, lr):
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        self.model = Sequential()
        self.model.add(Dense(hu, activation='relu',
                             input_dim=self.n_features))
        self.model.add(Dense(hu, activation='relu'))
        self.model.add(Dense(2, activation='linear'))
        self.model.compile(loss='mse', optimizer=opt(learning_rate=lr))
        
    def _reshape(self, state):
        state = state.flatten()
        return np.reshape(state, [1, len(state)])
            
    def act(self, state):
        if random.random() < self.epsilon:
            return self.env.action_space.sample()
        return np.argmax(self.model.predict(state)[0])
        
    def replay(self):
        batch = random.sample(self.memory, self.batch_size)
        for state, action, next_state, reward, done in batch:
            if not done:
                reward += self.gamma * np.amax(
                    self.model.predict(next_state)[0])
                target = self.model.predict(state)
                target[0, action] = reward
                self.model.fit(state, target, epochs=1, verbose=False)
        if self.epsilon > self.epsilon_min:
            self.epsilon *= self.epsilon_decay
            
    def learn(self, episodes):
        for e in range(1, episodes + 1):
            self.episodes += 1
            state, _ = self.env.reset()
            state = self._reshape(state)
            treward = 0
            for f in range(1, 5000):
                self.f = f
                action = self.act(state)
                next_state, reward, done, trunc, _ = self.env.step(action)
                treward += reward
                next_state = self._reshape(next_state)
                self.memory.append(
                    [state, action, next_state, reward, done])
                state = next_state 
                if done:
                    self.trewards.append(treward)
                    self.max_treward = max(self.max_treward, treward)
                    templ = f'episode={self.episodes:4d} | '
                    templ += f'treward={treward:7.3f}'
                    templ += f' | max={self.max_treward:7.3f}'
                    print(templ, end='\r')
                    break
            if len(self.memory) > self.batch_size:
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                self.replay()
        print()
        
    def test(self, episodes, min_accuracy=0.0,
             min_performance=0.0, verbose=True,
             full=True):
        ma = self.env.min_accuracy
        self.env.min_accuracy = min_accuracy
        if hasattr(self.env, 'min_performance'):
            mp = self.env.min_performance
            self.env.min_performance = min_performance
            self.performances = list()
        for e in range(1, episodes + 1):
            state, _ = self.env.reset()
            state = self._reshape(state)
            for f in range(1, 5001):
                action = np.argmax(self.model.predict(state)[0])
                state, reward, done, trunc, _ = self.env.step(action)
                state = self._reshape(state)
                if done:
                    templ = f'total reward={f:4d} | '
                    templ += f'accuracy={self.env.accuracy:.3f}'
                    if hasattr(self.env, 'min_performance'):
                        self.performances.append(self.env.performance)
                        templ += f' | performance={self.env.performance:.3f}'
                    if verbose:
                        if full:
                            print(templ)
                        else:
                            print(templ, end='\r')
                    break
        self.env.min_accuracy = ma
        if hasattr(self.env, 'min_performance'):
            self.env.min_performance = mp
        print()
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CHAPTER 5

Generated Data

In the proposed adversarial nets framework, the generative model is pitted against an
adversary: a discriminative model that learns to determine whether a sample is from
the model distribution or the data distribution. The generative model can be thought
of as analogous to a team of counterfeiters, trying to produce fake currency and use it
without detection, while the discriminative model is analogous to the police, trying to
detect the counterfeit currency. Competition in this game drives both teams to
improve their methods until the counterfeits are indistinguishable from the genuine
articles.

—Goodfellow et al. (2014)

In their seminal paper, Goodfellow et al. (2014) introduce generative adversarial nets
(GANs) that rely on a so-called generator and discriminator. The generator is trained
on a given data set. Its purpose is to generate data that is similar “in nature,” that is,
in a statistical sense, to the original data set. The discriminator is trained to distin‐
guish between samples from the original data set and samples generated by the gen‐
erator. The goal is to train the generator to produce samples that the discriminator
cannot distinguish from original samples.

Although this approach might sound relatively simple at first, it has seen a large
number of breakthrough applications since its publication. There are GANs available
nowadays that create images, paintings, cartoons, texts, poems, songs, computer
code, and even videos that are hardly distinguishable or even impossible to distin‐
guish from human work. Between 2022 and 2024 alone, so many GANs have been
published—open ones and commercial ones—that it is impossible to provide an
exhaustive list.

GANs can also be used to create synthetic time series data that in turn can be used to
train reinforcement learning agents. Similar to the noisy data and Monte Carlo simu‐
lation (MCS) approaches in Chapter 4, GANs can generate a theoretically infinite set
of synthetic time series.

67



The chapter proceeds as follows. “Simple Example” on page 68 illustrates the training
of a GAN based on data generated by a deterministic function. “Financial Example”
on page 73 then trains a GAN based on historical returns data of a financial instru‐
ment. The goal for the generator is to generate synthetic returns data that, in the best
case, the discriminator cannot distinguish from the real returns data. In addition, the
Kolmogorov-Smirnow (KS) statistical test is applied to illustrate that synthetic
returns data can also be indistinguishable from real data in traditional statistical tests.

Simple Example
This section deals with data generated by a deterministic mathematical function.
First, here are some typical Python imports and configurations:

In [1]: import os
        import numpy as np
        import pandas as pd
        from pylab import plt, mpl

In [2]: import tensorflow as tf
        from tensorflow.keras.models import Sequential
        from tensorflow.keras.layers import Dense
        from tensorflow.keras.optimizers.legacy import Adam
        from sklearn.preprocessing import StandardScaler

In [3]: plt.style.use('seaborn-v0_8')
        mpl.rcParams['figure.dpi'] = 300
        mpl.rcParams['savefig.dpi'] = 300
        mpl.rcParams['font.family'] = 'serif'
        os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'

Second, the original data is generated from a simple mathematical function and is
normalized. Figure 5-1 shows the two data sets as lines:

In [4]: x = np.linspace(-2, 2, 500)  

In [5]: def f(x):
            return x ** 3  

In [6]: y = f(x)  

In [7]: scaler = StandardScaler()  

In [8]: y_ = scaler.fit_transform(y.reshape(-1, 1))  

In [9]: plt.plot(x, y, 'r', lw=1.0,
                 label='real data')
        plt.plot(x, y_, 'b--', lw=1.0,
                 label='normalized data')
        plt.legend();
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Generates the input values of a given interval

Defines the mathematical function (a cubic monomial)

Generates the output values

Normalizes the data using Gaussian normalization

Figure 5-1. Real data (solid line); normalized data (dashed line)

The following Python code creates the first component of the GAN: the generator. It
is a simple, standard deep neural network (DNN) for estimation:

In [10]: def create_generator(hu=32):
             model = Sequential()
             model.add(Dense(hu, activation='relu', input_dim=1))
             model.add(Dense(hu, activation='relu'))
             model.add(Dense(1, activation='linear'))
             return model

The second component of the GAN is the discriminator, which is created through the
following Python function. The model is again a simple, standard DNN—but this
time for binary classification:

In [11]: def create_discriminator(hu=32):
             model = Sequential()
             model.add(Dense(hu, activation='relu', input_dim=1))
             model.add(Dense(hu, activation='relu'))
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             model.add(Dense(1, activation='sigmoid'))
             model.compile(loss='binary_crossentropy', optimizer=Adam(),
                           metrics=['accuracy'])
             return model

The GAN is created by taking the generator and discriminator models as input argu‐
ments for the following function. For the GAN, the discriminator is set to “not
trainable”—only the generator is trained with the GAN:

In [12]: def create_gan(generator, discriminator, lr=0.001):
             discriminator.trainable = False  
             model = Sequential()
             model.add(generator)  
             model.add(discriminator)  
             model.compile(loss='binary_crossentropy',
                           optimizer=Adam(learning_rate=lr))
             return model

In [13]: generator = create_generator()  
         discriminator = create_discriminator()  
         gan = create_gan(generator, discriminator, 0.0001)  

The discriminator model is not trained.

The generator model is added first to the GAN.

The discriminator model is added second to the GAN.

The three models are created in sequence.

With the three models created, the training of the models can take place. The follow‐
ing Python code trains the models over many epochs with a randomly sampled batch
of a given size per epoch:

In [14]: from numpy.random import default_rng

In [15]: rng = default_rng(seed=100)

In [16]: def train_models(y_, epochs, batch_size):
             for epoch in range(epochs):
                 # Generate synthetic data
                 noise = rng.normal(0, 1, (batch_size, 1))  
                 synthetic_data = generator.predict(noise, verbose=False)  

                 # Train discriminator
                 real_data = y_[rng.integers(0, len(y_), batch_size)]  
                 discriminator.train_on_batch(real_data, np.ones(batch_size))  
                 discriminator.train_on_batch(synthetic_data,
                                              np.zeros(batch_size))  

                 # Train generator
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                 noise = rng.normal(0, 1, (batch_size, 1))  
                 gan.train_on_batch(noise, np.ones(batch_size))  

                 # Print progress
                 if epoch % 1000 == 0:
                     print(f'Epoch: {epoch}')
             return real_data, synthetic_data

In [17]: %%time
         real_data, synthetic_data = train_models(y_, epochs=5001, batch_size=32)
         Epoch: 0
         Epoch: 1000
         Epoch: 2000
         Epoch: 3000
         Epoch: 4000
         Epoch: 5000
         CPU times: user 1min 47s, sys: 10.9 s, total: 1min 58s
         Wall time: 1min 49s

Generates standard normally distributed noise…

…as input for the generator to create synthetic data

Randomly samples data from the real data set

Trains the discriminator on the real data sample (labels are 1)

Trains the discriminator on the synthetic data sample (labels are 0)

Generates standard normally distributed noise…

…as input for the training of the generator

Figure 5-2 shows the last real data and synthetic data samples from the training.
These are the data sets the discriminator is confronted with. It is difficult to tell, just
by visual inspection, whether the data sets are sampled from the real data or not. Cor‐
rectly making that determination is actually what the discriminator is striving for:

In [18]: plt.plot(real_data, 'r', lw=1.0,
                  label='real data (last batch)')
         plt.plot(synthetic_data, 'b:', lw=1.0,
                  label='synthetic data (last batch)')
         plt.legend();
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Figure 5-2. Normalized real and synthetic data samples

A more thorough analysis can shed more light on the statistical properties of the syn‐
thetic data sets generated by the GAN as compared to the real data from the mathe‐
matical function.

To this end, the following Python code generates several synthetic data sets of the
same length as the real data set. Several descriptive statistics—such as minimum,
mean, and maximum values—can shed light on the similarity of the synthetic data
sets to the real data set. In addition, the normalization of the data is reversed. As we
can see, the descriptive statistics of the real data set and the synthetic data sets are not
too dissimilar:

In [19]: data = pd.DataFrame({'real': y}, index=x)

In [20]: N = 5  
         for i in range(N):
             noise = rng.normal(0, 1, (len(y), 1))
             synthetic_data = generator.predict(noise, verbose=False)
             data[f'synth_{i:02d}'] = scaler.inverse_transform(synthetic_data)

In [21]: data.describe().round(3)
Out[21]:           real  synth_00  synth_01  synth_02  synth_03  synth_04
         count  500.000   500.000   500.000   500.000   500.000   500.000
         mean    -0.000    -0.110    -0.107    -0.311    -0.142    -0.128
         std      3.045     2.768     2.888     2.776     2.898     3.016
         min     -8.000   -12.046   -11.748   -10.252   -10.033    -8.818
         25%     -1.000    -0.890    -1.035    -1.241    -1.119    -1.193
         50%     -0.000    -0.031    -0.035    -0.048    -0.046    -0.041
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         75%      1.000     0.862     0.884     0.546     0.731     0.746
         max      8.000     9.616    11.951     8.266     7.449     9.399

Five synthetic data sets of full length are generated.

The real data set is generated from a monotonically increasing function. Therefore,
the following visualization shows the real data set and the synthetically generated
data sets sorted in ascending order from the smallest to the largest value. As
Figure 5-3 shows, the sorted synthetic data captures the basic shape of the real data
quite well. It does it particularly well around 0. It does not do so well on the left and
right limits of the interval. The similarity of the data sets is illustrated by the relatively
low mean-squared error (MSE) for the first synthetic data set:

In [22]: ((data.apply(np.sort)['real'] -
           data.apply(np.sort)['synth_00']) ** 2).mean()  
Out[22]: 0.22622928664937703

In [23]: data.apply(np.sort).plot(style=['r'] + N * ['b--'], lw=1, legend=False);

MSE for the sorted first synthetic data set, given the real data set

Figure 5-3. Real data set (solid line) and sorted synthetic data sets (dashed lines)

Financial Example
This section applies the GAN approach from “Simple Example” on page 68 to finan‐
cial returns data. The goal for the generator is to generate synthetic returns data that
the discriminator cannot distinguish from the real returns data. The Python code is
essentially the same.
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First, the financial data is retrieved and the log returns are calculated and normalized:

In [24]: raw = pd.read_csv('https://certificate.tpq.io/rl4finance.csv',
                          index_col=0, parse_dates=True).dropna()  

In [25]: rets = raw['GLD'].iloc[-2 * 252:]  
         rets = np.log((rets / rets.shift(1)).dropna())  
         rets = rets.values  

In [26]: scaler = StandardScaler()  

In [27]: rets_ = scaler.fit_transform(rets.reshape(-1, 1))  

Retrieves the financial data set from the remote source

Selects, for a given symbol, a subset of the price data

Calculates the log returns from the price data

Transforms the pandas Series object into a numpy ndarray object

Applies Gaussian normalization to the log returns

Second, there is the creation of the three models: the generator, the discriminator,
and the GAN itself:

In [28]: rng = default_rng(100)
         tf.random.set_seed(100)

In [29]: generator = create_generator(hu=24)
         discriminator = create_discriminator(hu=24)
         gan = create_gan(generator, discriminator, lr=0.0001)

Third, there is the training of the models:

In [30]: %time rd, sd = train_models(y_=rets_, epochs=5001, batch_size=32)
         Epoch: 0
         Epoch: 1000
         Epoch: 2000
         Epoch: 3000
         Epoch: 4000
         Epoch: 5000
         CPU times: user 1min 44s, sys: 10.6 s, total: 1min 55s
         Wall time: 1min 45s

Fourth, there is the generation of the synthetic data. Figure 5-4 shows the real log
returns and one synthetic data set for comparison:

In [31]: data = pd.DataFrame({'real': rets})

In [32]: N = 25
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In [33]: for i in range(N):
             noise = np.random.normal(0, 1, (len(rets_), 1))  
             synthetic_data = generator.predict(noise, verbose=False)  
             data[f'synth_{i:02d}'] = scaler.inverse_transform(
                                                     synthetic_data)  

In [34]: res = data.describe().round(4)  
         res.iloc[:, :5]  
Out[34]:            real  synth_00  synth_01  synth_02  synth_03
         count  503.0000  503.0000  503.0000  503.0000  503.0000
         mean     0.0002    0.0003    0.0007   -0.0001    0.0003
         std      0.0090    0.0088    0.0082    0.0084    0.0084
         min     -0.0302   -0.0269   -0.0385   -0.0277   -0.0246
         25%     -0.0052   -0.0052   -0.0044   -0.0054   -0.0046
         50%      0.0003   -0.0004    0.0007    0.0001    0.0008
         75%      0.0054    0.0059    0.0062    0.0045    0.0051
         max      0.0316    0.0263    0.0275    0.0321    0.0306

In [35]: data.iloc[:, :2].plot(style=['r', 'b--', 'b--'], lw=1, alpha=0.7);

Generates random synthetic data

Inverse transforms the data and stores it

Shows descriptive statistics for the real and synthetic data

Figure 5-4. Real and synthetic log returns
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The following Python code compares the real and synthetic log returns based on their
histograms (see Figure 5-5). The histograms show a large degree of similarity:

In [36]: data['real'].plot(kind='hist', bins=50, label='real',
                           color='r', alpha=0.7)
         data['synth_00'].plot(kind='hist', bins=50, alpha=0.7,
                           label='synthetic', color='b', sharex=True)
         plt.legend();

Figure 5-5. Histogram of the real and synthetic log returns

Figure 5-6 provides yet another comparison, this time based on the empirical cumu‐
lative distribution function (CDF) of the real and the synthetic log returns:

In [37]: plt.plot(np.sort(data['real']), 'r', lw=1.0, label='real')
         plt.plot(np.sort(data['synth_00']), 'b--', lw=1.0, label='synthetic')
         plt.legend();
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Figure 5-6. CDF of the real and synthetic log returns

Finally, the following Python code visualizes the cumulative real gross returns as well
as several synthetic cumulative log return time series. The real financial time series
looks like one that is generated with the GAN. Without the visual highlighting, the
real financial time series might indeed be indistinguishable from the other processes
(see Figure 5-7):

In [38]: sn = N
         data.iloc[:, 1:sn + 1].cumsum().apply(np.exp).plot(
             style='b--', lw=0.7, legend=False)
         data.iloc[:, 1:sn + 1].mean(axis=1).cumsum().apply(
             np.exp).plot(style='g', lw=2)
         data['real'].cumsum().apply(np.exp).plot(style='r', lw=2);
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1 The KS test dates back to the seminal paper by Kolmogorov published in 1933.

Figure 5-7. Real and synthetic cumulative log returns series

Kolmogorov-Smirnov Test
The Kolmogorov-Smirnov (KS) test is a statistical test that answers the following
question: How likely is it that a given data sample has been drawn from a given distri‐
bution?1 This test applies quite well to the situation in this chapter. A frequency dis‐
tribution of the historical returns of a financial instrument is given, and it is the
starting point for everything. A GAN is trained based on these historical returns. The
GAN then generates multiple return samples synthetically. The question is, how
likely is it—applying the KS test—that a given synthetic sample is drawn from the
original distribution of historically observed returns? In other words, can the genera‐
tor not only fool the discriminator but also the KS test?

The following Python code implements the KS test on the synthetically generated
data samples. The results show that the KS test indicates in all cases that the sample is
likely from the original distribution. Figure 5-8 shows the frequency distribution of
the p-values of the KS test. All p-values are above the threshold value of 0.05 (see the
vertical line)—in many instances, the values are significantly larger than the thresh‐
old value. The GAN seems to do a great job of fooling the KS test into indicating that
the synthetic samples are from the original distribution:
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In [39]: from scipy import stats

In [40]: pvs = list()
         for i in range(N):
             pvs.append(stats.kstest(data[f'synth_{i:02d}'],
                                     data['real']).pvalue)
         pvs = np.array(pvs)

In [41]: np.sort((pvs > 0.05).astype(int))
Out[41]: array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
          1, 1, 1, 1])

In [44]: sum(np.sort(pvs > 0.05)) / N
Out[44]: 1.0

In [43]: plt.hist(pvs, bins=100)
         plt.axvline(0.05, color='r');

Figure 5-8. Histogram of p-values of the KS test
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2 Hilpisch (2015) provides details for the calibration of stochastic models for MCS in the context of option
pricing and hedging.

The Power of GANs

The GAN approach to generating synthetic time series data seems
to be a great one. Visualizations generally do not allow a human
observer to distinguish between real and synthetic data. Nor is a
DNN—that is, the discriminator—capable of properly distinguish‐
ing between the data sets. In addition, as this section shows, tradi‐
tional and widely used statistical tests fail to properly distinguish
between real and synthetic data. For reinforcement learning (RL)
projects, GANs seem to provide one option for generating theoreti‐
cally infinite synthetic data sets that have all the qualities of the
original data set of interest.

Conclusions
Neural networks can be trained to generate data that is similar to, or even indistin‐
guishable from, real financial data. This chapter introduces GANs based on simple
sample data generated from a deterministic mathematical function. It then shows
how to apply the same GAN architecture to log returns from a real financial time ser‐
ies. The result is the availability of a theoretically infinite number of generated finan‐
cial time series that can be used in RL or other financial applications. Creswell et al.
(2017) provide an early overview of GANs, while Eckerli and Osterrieder (2021) do
so particularly for GANs in finance.

At first glance, GANs seem to do something very similar to the MCS approach from
Chapter 4. However, there are major differences. MCS in general relies on a relatively
simple, parsimonious mathematical model. A few parameters can be chosen to reflect
certain statistical facts of the real financial time series to be simulated. One such
approach is the calibration of the model parameters to the prices of liquidly traded
options on the financial instrument whose price series is to be simulated.2

On the other hand, GANs learn about the full distribution, say, of the log returns to
be generated synthetically. The training of the generator DNN happens in competi‐
tion with the discriminator DNN, so the generator gets better and better at mimick‐
ing the historical distribution. At the same time, the discriminator gets better at
distinguishing between real samples and synthetic samples of the log returns. Both
DNNs are expected to improve during training to achieve good results overall.

The next part and the following chapters are about the application of the deep Q-
learning (DQL) algorithm to typical dynamic financial problems. They leverage the
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methods introduced in this part to provide as many data samples for training and
testing of the DQL agents as are necessary.
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PART III

Financial Applications

The third part of the book applies the algorithms and techniques introduced in the
first two parts to classical financial problems:

• Chapter 6 applies deep Q-learning (DQL) to the algorithmic trading of a single
financial instrument. It builds on the prediction game discussed in Chapter 3.
The chapter uses Monte Carlo simulated data to train a financial Q-learning
(FQL) agent called TradingAgent. The goal of the FQL agent is to maximize the
profit from going long and short on a single financial instrument.

• Chapter 7 uses DQL to learn how to hedge, or rather replicate, a European call
option in the seminal model by Black-Scholes-Merton (1973) for option pricing.
The HedgingAgent is able to learn appropriate hedging strategies by working
with market-observable data only. For example, the agent knows the current
price of the underlying asset, the time to maturity, and the current option price.

• Chapter 8 applies reinforcement learning (RL) to three classical problems in
investment management. The first problem is determining the optimal allocation
between a risky asset and a risk-free asset, commonly referred to as two-fund sep‐
aration. The second problem focuses on finding the optimal allocation between
two risky, negatively correlated assets. The third problem extends this to the
optimal allocation among three risky assets. The InvestingAgent developed in
this chapter generates Sharpe ratios that consistently surpass those of individual
risky assets in the two- and three-asset cases.



• Chapter 9 tackles the challenge of cost-efficiently liquidating a large stock posi‐
tion over multiple trading days. The ExecutionAgent learns approximately opti‐
mal liquidation trajectories while considering permanent market impact costs,
temporary market impact costs, and execution risk—factors typically addressed
in this context. This chapter introduces an actor-critic algorithm as an alternative
to the DQL algorithm used in previous chapters. The problem in this chapter
also differs in that each action (trade) is linked to every other action through an
additional constraint that simultaneously applies to all actions.



CHAPTER 6

Algorithmic Trading

Automated stock-trading systems are widely used by major investing houses. While
some of these are simply ways of automating the execution of particular buy or sell
orders issued by a human fund manager, others pursue complicated trading strategies
that adapt to changing market conditions.

—Bostrom (2014)

Financial giants such as Goldman Sachs and many of the biggest hedge funds are all
switching on AI-driven systems that can foresee market trends and make trades better
than humans.

—Maney (2017)

In Chapter 3, the deep Q-learning (DQL) agent learns to predict the future direction
of the price movement of a financial instrument. We call this a financial prediction
game. It is a natural progression to interpret the prediction game as a DQL agent
learning to algorithmically trade in financial markets. A prediction of an upward
movement can be interpreted as taking on a long position in the financial instrument
of interest. Analogously, the prediction of a downward movement is interpreted as
taking on a short position. Over time, the predictions might also imply keeping the
current position open.

In addition to this reinterpretation of the prediction game as algorithmic trading, the
financial side needs to be implemented. Taking on a long or short position in a finan‐
cial instrument leads to a positive or negative return on such a position. Therefore, to
assess the financial performance of the algorithmically trading DQL agent, its posi‐
tions must be linked to the returns on those positions, specifically evaluating the
agent’s accumulated profit and loss (P&L).

This chapter proceeds as follows. “Prediction Game Revisited” on page 86 revisits the
prediction game from Chapter 3 and the Finance environment developed there. It
also uses the Simulation environment from “Simulated Time Series Data” on page
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56 to replace the single, fixed historical time series from the Finance class with an
arbitrarily large number of simulated time series. “Trading Environment” on page 89
introduces a trading environment that simulates the evolution of the price of a finan‐
cial instrument along the lines of “Simulated Time Series Data” on page 56. The envi‐
ronment allows the selection of additional financial features in addition to the price
itself and the log returns. “Trading Agent” on page 94 trains the financial Q-learning
(FQL) agent, called TradingAgent, on simulated data and tests for the financial per‐
formance of the trained agent in comparison to a randomly investing one.

Prediction Game Revisited
This section revisits the financial prediction game from Chapter 3. To simplify the
exposition, the Finance environment is imported from a Python module (see
“Finance Environment” on page 98), as is the DQLAgent class (see “DQLAgent Class”
on page 100). The DQLAgent class is changed in multiple instances. The major goal
is to have the original DQLAgent class as a special case and to allow, at the same time,
for multiple features instead of just one. First, implement the usual imports:

In [1]: import math
        import random
        import numpy as np
        import pandas as pd
        from pylab import plt, mpl

In [2]: plt.style.use('seaborn-v0_8')
        mpl.rcParams['figure.dpi'] = 300
        mpl.rcParams['savefig.dpi'] = 300
        mpl.rcParams['font.family'] = 'serif'
        np.set_printoptions(suppress=True)

The following Python code imports the Finance class and visualizes the time series of
the price for the symbol chosen (see Figure 6-1):

In [3]: from finance import *

In [4]: finance = Finance('GLD', 'r', min_accuracy=47.5,
                      n_features=8)

In [5]: finance.data[finance.symbol].plot(title=finance.symbol,
                                          lw=1.0, c='b');
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Figure 6-1. Historical financial time series data

With the Finance environment object instantiated, a DQL agent can do its work. The
following Python code trains the agent and implements a small number of tests. Dur‐
ing the tests, a minimum threshold accuracy of 0 is assumed so that the agent will
always reach the end of the data. The achieved accuracy does not vary because the
data set is fixed and the agent only exploits its acquired knowledge as embodied in its
neural network:

In [6]: from dqlagent import *

In [7]: random.seed(100)
        tf.random.set_seed(100)

In [8]: dqlagent = DQLAgent(finance.symbol, finance.feature,
                         finance.n_features, finance, lr=0.0001)

In [9]: %time dqlagent.learn(500)
        episode= 500 | treward=   8.00 | max=  12.00
        CPU times: user 14.5 s, sys: 1.96 s, total: 16.4 s
        Wall time: 13.2 s

In [10]: dqlagent.test(3)
         total reward=2507 | accuracy=0.516
         total reward=2507 | accuracy=0.516
         total reward=2507 | accuracy=0.516
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The same DQL agent can also interact by default with the Simulation environment
from “Simulated Time Series Data” on page 56. That class is imported from yet
another Python module (see “Simulation Environment” on page 102). The chosen
parametrization leads to a negatively trending time series, as Figure 6-2 illustrates:

In [11]: from simulation import Simulation

In [12]: random.seed(500)

In [13]: simulation = Simulation('SYMBOL', 'r', 4, '2025-1-1', '2027-1-1',
                         2 * 252, min_accuracy=0.5, x0=1, kappa=1,
                         theta=0.75, sigma=0.1, new=True, normalize=True)

In [14]: for _ in range(5):
             simulation.reset()
             simulation.data[simulation.symbol].plot(title=simulation.symbol,
                                                    lw=1.0, c='b');

Figure 6-2. Simulated, trending financial time series data

This time, the DQL agent is faced with a new, simulated time series during every
learning episode. The same holds for the testing runs so that the accuracy varies for
every such run:

In [15]: random.seed(100)
         tf.random.set_seed(100)

In [16]: agent = DQLAgent(simulation.symbol, simulation.feature,
                          simulation.n_features, simulation)
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In [17]: %time agent.learn(250)
         episode= 250 | treward=  16.00 | max= 279.00
         CPU times: user 10.8 s, sys: 1.61 s, total: 12.4 s
         Wall time: 10.1 s

In [18]: agent.test(5)
         total reward= 499 | accuracy=0.517
         total reward= 499 | accuracy=0.581
         total reward= 499 | accuracy=0.523
         total reward= 499 | accuracy=0.519
         total reward= 499 | accuracy=0.515

Both the Simulation environment and the DQLAgent class are modified in the subse‐
quent sections. The major adjustments relate to the environment, which shall provide
a richer set of state variables than the Simulation one.

Trading Environment
“Simulated Time Series Data” on page 56 introduces Monte Carlo simulation (MCS)
as a method to generate a theoretically infinite number of different time series with
certain characteristics, such as trending or mean reverting. The previous section
revisits the prediction game context as set out in Chapter 3 against the background of
such simulated time series data.

This section develops a new, yet similar, environment leveraging the MCS approach
and deriving several financial features from the simulated data. The environment
allows an agent to retrieve multiple such features with a specified number of lags as
the state of the environment. This approach enriches the state of the environment
significantly (as compared to the Simulation class from “Simulated Time Series
Data” on page 56) to improve the prediction capabilities of the DQL agent.

To keep things simple and in line with the reinforcement learning (RL) approach
implemented in Chapter 3, the DQL agent is supposed to choose, as before, one of
two possible actions. They are interpreted as taking a long position or a short posi‐
tion in the financial instrument whose price is simulated.

The following Python code provides the initialization method of the Trading class.
This class requires a minimum accuracy for the prediction and a minimum financial
performance during the training episodes. It also allows for leverage as this is typical,
for example, in foreign exchange (FX) trading:

In [19]: class ActionSpace:
             def sample(self):
                 return random.randint(0, 1)

In [20]: class Trading:
             def __init__(self, symbol, features, window, lags,
                          start, end, periods,
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                          x0=100, kappa=1, theta=100, sigma=0.2,
                          leverage=1, min_accuracy=0.5, min_performance=0.85,
                          mu=None, std=None,
                          new=True, normalize=True):
                 self.symbol = symbol
                 self.features = features
                 self.n_features = len(features)
                 self.window = window
                 self.lags = lags
                 self.start = start
                 self.end = end
                 self.periods = periods
                 self.x0 = x0
                 self.kappa = kappa
                 self.theta = theta
                 self.sigma = sigma
                 self.leverage = leverage  
                 self.min_accuracy = min_accuracy  
                 self.min_performance = min_performance  
                 self.start = start
                 self.end = end
                 self.mu = mu
                 self.std = std
                 self.new = new
                 self.normalize = normalize
                 self.action_space = ActionSpace()
                 self._simulate_data()
                 self._prepare_data()

Defines the leverage attribute (1 by default)

Defines the minimum prediction accuracy

Defines the minimum performance in terms of gross performance

The simulation of the time series data is again implemented as a discrete Vasicek
(1977) with proportional volatility (the Brennan-Schwartz process):

In [21]: class Trading(Trading):
             def _simulate_data(self):
                 index = pd.date_range(start=self.start,
                             end=self.end, periods=self.periods)
                 s = [self.x0]
                 dt = (index[-1] - index[0]).days / 365 / self.periods
                 for t in range(1, len(index)):
                     s_ = (s[t - 1] + self.kappa * (self.theta - s[t - 1]) * dt
                       + s[t - 1] * self.sigma * math.sqrt(dt) *
                         random.gauss(0, 1))
                     s.append(s_)
                 self.data = pd.DataFrame(s, columns=[self.symbol], index=index)
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The data preparation is where the new Trading class differs most from the original
Simulation class. In addition to deriving the log returns, and based on the market
direction, the class adds several typical financial statistics to the set of available fea‐
tures. Among them are a simple moving average (SMA), the rolling delta between the
price and the SMA (DEL), the rolling minimum and maximum of the price (MIN,
MAX), and the momentum as the rolling average return (MOM):

In [22]: class Trading(Trading):
             def _prepare_data(self):
                 self.data['r'] = np.log(self.data / self.data.shift(1))
                 self.data.dropna(inplace=True)
                 # additional features
                 if self.window > 0:
                     self.data['SMA'] = self.data[
                         self.symbol].rolling(self.window).mean()  
                     self.data['DEL'] = self.data[
                         self.symbol] - self.data['SMA']  
                     self.data['MIN'] = self.data[
                         self.symbol].rolling(self.window).min()  
                     self.data['MAX'] = self.data[
                         self.symbol].rolling(self.window).max()  
                     self.data['MOM'] = self.data['r'].rolling(
                         self.window).mean()  
                     # add more features here
                     self.data.dropna(inplace=True)
                 if self.normalize:
                     if self.mu is None or self.std is None:
                         self.mu = self.data.mean()
                         self.std = self.data.std()
                     self.data_ = (self.data - self.mu) / self.std
                 else:
                     self.data_ = self.data.copy()
                 self.data['d'] = np.where(self.data['r'] > 0, 1, 0)
                 self.data['d'] = self.data['d'].astype(int)

SMA of the price

DEL between current price and the SMA

Rolling MIN of the price

Rolling MAX of the price

MOM as the rolling mean of the log return
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1 The pandas-ta package, for example, offers an efficient way of adding typical financial indicators (features) to
a given financial time series.

Adding Financial Features

The Trading class creates and works with several financial features
that are regularly used by traders and investors who analyze finan‐
cial price charts. However, there is a much larger number of such
features available that can be added to the environment class.1 This
might, depending on the use case, significantly improve the learn‐
ing and performance of the DQL agent. While the state of a chess
environment is definitively given at any time, the definition of the
state of a financial market generally requires research, modeling
effort, and testing to achieve satisfactory results with RL.

The following three methods are known from the Simulation class:

In [23]: class Trading(Trading):
             def _get_state(self):
                 return self.data_[self.features].iloc[self.bar -
                                         self.lags:self.bar]
             def seed(self, seed):
                 random.seed(seed)
                 np.random.seed(seed)
                 tf.random.set_random_seed(seed)
             def reset(self):
                 if self.new:
                     self._simulate_data()
                     self._prepare_data()
                 self.treward = 0
                 self.accuracy = 0
                 self.actions = list()
                 self.returns = list()
                 self.performance = 1
                 self.bar = self.lags
                 state = self._get_state()
                 return state.values, {}

The major difference in the .step() method is that it checks for the minimum
required performance. This happens, like for the accuracy check, with a grace period
of a certain number of bars:

In [24]: class Trading(Trading):
             def step(self, action):
                 correct = action == self.data['d'].iloc[self.bar]
                 ret = self.data['r'].iloc[self.bar] * self.leverage
                 reward_ = 1 if correct else 0
                 pl = abs(ret) if correct else -abs(ret)  
                 reward = reward_
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                 # alternative options:
                 # reward = pl  # only the P&L in log returns
                 # reward = reward_ + 10 * pl  # the reward + the scaled P&L
                 self.treward += reward
                 self.bar += 1
                 self.accuracy = self.treward / (self.bar - self.lags)
                 self.performance *= math.exp(pl)  
                 if self.bar >= len(self.data):
                     done = True
                 elif reward_ == 1:
                     done = False
                 elif (self.accuracy < self.min_accuracy and
                       self.bar > self.lags + 15):
                     done = True
                 elif (self.performance < self.min_performance and
                       self.bar > self.lags + 15):  
                     done = True
                 else:
                     done = False
                 state = self._get_state()
                 return state.values, reward, done, False, {}

Captures the log return for the trade

Updates the performance given the realized log return

Checks for the minimum performance criterion

The following Python code instantiates a Trading object and shows the simulated
and derived data, both selectively in numbers as well as visually (see Figure 6-3). The
Trading environment is now closer to what traders and investors would typically
analyze on their financial terminals and trading screens:

In [25]: symbol = 'SYMBOL'

In [26]: trading = Trading(symbol, [symbol, 'r', 'DEL'], window=10, lags=5,
                     start='2024-1-1', end='2026-1-1', periods=504,
                     x0=100, kappa=2, theta=300, sigma=0.1, normalize=False)

In [27]: random.seed(750)

In [28]: trading.reset()  
Out[28]: (array([[115.90591443,   0.01926915,   6.89239862],
                 [117.17850569,   0.01091968,   6.5901155 ],
                 [118.79489427,   0.01369997,   6.65876779],
                 [120.63380354,   0.01536111,   6.92684742],
                 [121.81132396,   0.00971378,   6.65768164]]),
          {})

In [29]: trading.data.info()
         <class 'pandas.core.frame.DataFrame'>
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         DatetimeIndex: 494 entries, 2024-01-15 12:47:14.194831014 to 2026-01-01
          00:00:00
         Data columns (total 8 columns):
          #   Column  Non-Null Count  Dtype
         ---  ------  --------------  -----
          0   SYMBOL  494 non-null    float64
          1   r       494 non-null    float64
          2   SMA     494 non-null    float64
          3   DEL     494 non-null    float64
          4   MIN     494 non-null    float64
          5   MAX     494 non-null    float64
          6   MOM     494 non-null    float64
          7   d       494 non-null    int64
         dtypes: float64(7), int64(1)
         memory usage: 34.7 KB

In [30]: trading.data.iloc[-200:][
             [trading.symbol, 'SMA', 'MIN', 'MAX']].plot(
                 style=['b-', 'r--', 'g:', 'g:'], lw=1.0);

The state consists now of multiple features with multiple lags.

Figure 6-3. Simulated financial time series data with multiple features

Trading Agent
As compared with the DQLAgent class from “DQLAgent Class” on page 100, only the
DNN model architecture needs to be changed to account for multiple features. More
specifically, the input layer is adjusted to accommodate multiple features with multi‐
ple lags:
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In [31]: class TradingAgent(DQLAgent):
             def _create_model(self, hu, lr):
                 self.model = Sequential()
                 self.model.add(Dense(hu, input_dim=
                     self.env.lags * self.env.n_features,
                                 activation='relu'))  
                 self.model.add(Flatten())  
                 self.model.add(Dense(hu, activation='relu'))
                 self.model.add(Dense(2, activation='linear'))
                 self.model.compile(loss='mse',
                     optimizer=opt(learning_rate=lr))

The input layer allows for multiple lags and multiple features.

This layer flattens the data from the input layer.

This completes the setup for algorithmic trading. To create a benchmark with which
to compare the performance of the algorithmically trading agent, the following code
instantiates the Trading object and generates test results without any prior training.
To this end, the random weights from the DNN initialization are used to generate the
trading predictions. Because the environment is configured such that the simulated
price process has a long-term mean (theta) well below the initial price (x0), all simu‐
lated price processes drop significantly on average in value. The random agent real‐
izes a negative performance for all the test runs. Figure 6-4 shows the histogram of
the performances realized. The net performance is negative in general:

In [32]: random.seed(100)
         tf.random.set_seed(100)

In [33]: trading = Trading(symbol, ['r', 'DEL', 'MOM'], window=10, lags=8,
                     start='2024-1-1', end='2026-1-1', periods=2 * 252,
                     x0=100, kappa=2, theta=50, sigma=0.1,
                     leverage=1, min_accuracy=0.5, min_performance=0.85,
                     new=True, normalize=True)

In [34]: tradingagent = TradingAgent(trading.symbol, trading.features,
                          trading.n_features, trading, hu=24, lr=0.0001)

In [35]: %%time
         tradingagent.test(100, min_accuracy=0.0,
                    min_performance=0.0,
                    verbose=True, full=False)
         total reward= 486 | accuracy=0.447 | performance=0.662
         CPU times: user 20.8 s, sys: 2.72 s, total: 23.6 s
         Wall time: 20.3 s

In [36]: random_performances = tradingagent.performances  

In [37]: sum(random_performances) / len(random_performances)  
Out[37]: 0.7349392873819823
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In [38]: plt.hist(random_performances, bins=50, color='b')
         plt.xlabel('gross performance')
         plt.ylabel('frequency');

Stores the realized performances of the random DQL agent

Calculates the average gross performance of the random DQL agent

Figure 6-4. Histogram of the test performances (random FQL agent)

The following code trains the TradingAgent and updates the weights in the neural
network accordingly. The agent learns that the simulated time series decreases on
average and takes on more short positions to benefit from the falling price. This
approach generates a significantly positive average performance, illustrating the
superiority of the trained agent over a simple random agent. Not once does the
trained agent lose money. Figure 6-5 shows the histogram of the performances real‐
ized in comparison with those of the random agent:

In [39]: %time tradingagent.learn(500)
         episode= 500 | treward= 280.00 | max= 295.00
         CPU times: user 58.3 s, sys: 7.56 s, total: 1min 5s
         Wall time: 56.2 s

In [40]: %%time
         tradingagent.test(50, min_accuracy=0.0,
                    min_performance=0.0,
                    verbose=True, full=False)
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         total reward= 486 | accuracy=0.549 | performance=1.582
         CPU times: user 10.6 s, sys: 1.34 s, total: 11.9 s
         Wall time: 10.4 s

In [41]: sum(tradingagent.performances) / len(tradingagent.performances)
Out[41]: 1.6505126231620155

In [42]: plt.hist(random_performances, bins=30,
                  color='b', label='random (left)')
         plt.hist(tradingagent.performances, bins=30,
                  color='r', label='trained(right)')
         plt.xlabel('gross performance')
         plt.ylabel('frequency')
         plt.legend();

Figure 6-5. Histogram of the test performances (trained versus random FQL agent)

Conclusions
This chapter discusses deep Q-learning for algorithmic trading. The setup is close to
that of the financial prediction game as discussed in Chapter 3, which is why it is pre‐
sented as the first financial application in Part III.

The chapter uses a TradingAgent class that inherits from the DQLAgent class of
“DQLAgent Class” on page 100, and that allows not only for consistency with the
previous environments introduced in the book but also for a richer state space with
multiple features and multiple lags. The only adjustment necessary to accommodate
multiple features is with regard to the input layer of the neural network. The Trading
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environment is based on a MCS approach as introduced in “Simulated Time Series
Data” on page 56 and adds multiple financial features that the TradingAgent can
choose from.

“Trading Agent” on page 94 shows that the TradingAgent can easily learn that the
simulated price processes drop over time and that it outperforms a random agent by
a large margin.

Hilpisch (2020) provides more details about DQL in the context of algorithmic trad‐
ing. Among other things, the book shows how to backtest the performance of a DQL
agent with vectorized and event-based backtesting. It also shows how to deploy a
trained DQL agent for live algorithmic trading via API access to a trading platform.

The next chapter turns attention to the application of DQL to the problem of learn‐
ing how to dynamically replicate (or delta hedge) a European call option.
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Finance Environment
The Python module finance.py provides the Finance class from Chapter 3:

#
# Finance Environment with Historical Data
#
# (c) Dr. Yves J. Hilpisch
# Reinforcement Learning for Finance
#

import random
import numpy as np
import pandas as pd

class ActionSpace:
    def sample(self):
        return random.randint(0, 1)
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class Finance:
    url = 'https://certificate.tpq.io/rl4finance.csv'
    def __init__(self, symbol, feature, min_accuracy=0.485, n_features=4):
        self.symbol = symbol
        self.feature = feature
        self.n_features = n_features
        self.action_space = ActionSpace()
        self.min_accuracy = min_accuracy
        self._get_data()
        self._prepare_data()

    def _get_data(self):
        self.raw = pd.read_csv(self.url,
                index_col=0, parse_dates=True)

    def _prepare_data(self):
        self.data = pd.DataFrame(self.raw[self.symbol]).dropna()
        self.data['r'] = np.log(self.data / self.data.shift(1))
        self.data['d'] = np.where(self.data['r'] > 0, 1, 0)
        self.data.dropna(inplace=True)
        self.data_ = (self.data - self.data.mean()) / self.data.std()

    def reset(self):
        self.bar = self.n_features
        self.treward = 0
        state = self.data_[self.feature].iloc[
            self.bar - self.n_features:self.bar].values
        return state, {}
        
    def step(self, action):
        if action == self.data['d'].iloc[self.bar]:
            correct = True
        else:
            correct = False
        reward = 1 if correct else 0
        self.treward += reward
        self.bar += 1
        self.accuracy = self.treward / (self.bar - self.n_features)
        if self.bar >= len(self.data):
            done = True
        elif reward == 1:
            done = False
        elif (self.accuracy < self.min_accuracy) and (self.bar > 15):
            done = True
        else:
            done = False
        next_state = self.data_[self.feature].iloc[
            self.bar - self.n_features:self.bar].values
        return next_state, reward, done, False, {}
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DQLAgent Class
The Python module dqlagent.py provides the DQLAgent class from Chapter 3. The
version presented here implements several adjustments and generalizations to allow,
among other things, for multiple features instead of just one. Other changes are
minor and generally technical in nature:

#
# Deep Q-Learning Agent
#
# (c) Dr. Yves J. Hilpisch
# Reinforcement Learning for Finance
#

import os
import random
import warnings
import numpy as np
import tensorflow as tf
from tensorflow import keras
from collections import deque
from keras.layers import Dense, Flatten
from keras.models import Sequential

warnings.simplefilter('ignore')
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'

from tensorflow.python.framework.ops import disable_eager_execution
disable_eager_execution()

opt = keras.optimizers.legacy.Adam

class DQLAgent:
    def __init__(self, symbol, feature, n_features, env, hu=24, lr=0.001):
        self.epsilon = 1.0
        self.epsilon_decay = 0.9975
        self.epsilon_min = 0.1
        self.memory = deque(maxlen=2000)
        self.batch_size = 32
        self.gamma = 0.5
        self.trewards = list()
        self.max_treward = -np.inf
        self.n_features = n_features
        self.env = env
        self.episodes = 0
        self._create_model(hu, lr)
        
    def _create_model(self, hu, lr):
        self.model = Sequential()
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        self.model.add(Dense(hu, activation='relu',
                             input_dim=self.n_features))
        self.model.add(Dense(hu, activation='relu'))
        self.model.add(Dense(2, activation='linear'))
        self.model.compile(loss='mse', optimizer=opt(learning_rate=lr))
        
    def _reshape(self, state):
        state = state.flatten()
        return np.reshape(state, [1, len(state)])
            
    def act(self, state):
        if random.random() < self.epsilon:
            return self.env.action_space.sample()
        return np.argmax(self.model.predict(state)[0])
        
    def replay(self):
        batch = random.sample(self.memory, self.batch_size)
        for state, action, next_state, reward, done in batch:
            if not done:
                reward += self.gamma * np.amax(
                    self.model.predict(next_state)[0])
                target = self.model.predict(state)
                target[0, action] = reward
                self.model.fit(state, target, epochs=1, verbose=False)
        if self.epsilon > self.epsilon_min:
            self.epsilon *= self.epsilon_decay
            
    def learn(self, episodes):
        for e in range(1, episodes + 1):
            self.episodes += 1
            state, _ = self.env.reset()
            state = self._reshape(state)
            treward = 0
            for f in range(1, 5000):
                self.f = f
                action = self.act(state)
                next_state, reward, done, trunc, _ = self.env.step(action)
                treward += reward
                next_state = self._reshape(next_state)
                self.memory.append(
                    [state, action, next_state, reward, done])
                state = next_state 
                if done:
                    self.trewards.append(treward)
                    self.max_treward = max(self.max_treward, treward)
                    templ = f'episode={self.episodes:4d} | '
                    templ += f'treward={treward:7.3f}'
                    templ += f' | max={self.max_treward:7.3f}'
                    print(templ, end='\r')
                    break
            if len(self.memory) > self.batch_size:
                self.replay()
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        print()
        
    def test(self, episodes, min_accuracy=0.0,
             min_performance=0.0, verbose=True,
             full=True):
        ma = self.env.min_accuracy
        self.env.min_accuracy = min_accuracy
        if hasattr(self.env, 'min_performance'):
            mp = self.env.min_performance
            self.env.min_performance = min_performance
            self.performances = list()
        for e in range(1, episodes + 1):
            state, _ = self.env.reset()
            state = self._reshape(state)
            for f in range(1, 5001):
                action = np.argmax(self.model.predict(state)[0])
                state, reward, done, trunc, _ = self.env.step(action)
                state = self._reshape(state)
                if done:
                    templ = f'total reward={f:4d} | '
                    templ += f'accuracy={self.env.accuracy:.3f}'
                    if hasattr(self.env, 'min_performance'):
                        self.performances.append(self.env.performance)
                        templ += f' | performance={self.env.performance:.3f}'
                    if verbose:
                        if full:
                            print(templ)
                        else:
                            print(templ, end='\r')
                    break
        self.env.min_accuracy = ma
        if hasattr(self.env, 'min_performance'):
            self.env.min_performance = mp
        print()

Simulation Environment
The Python module simulation.py provides the Simulation class from “Simulated
Time Series Data” on page 56:

#
# Monte Carlo Simulation Environment
#
# (c) Dr. Yves J. Hilpisch
# Reinforcement Learning for Finance
#

import math
import random
import numpy as np
import pandas as pd
from numpy.random import default_rng
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rng = default_rng()

class ActionSpace:
    def sample(self):
        return random.randint(0, 1)

class Simulation:
    def __init__(self, symbol, feature, n_features,
                 start, end, periods,
                 min_accuracy=0.525, x0=100,
                 kappa=1, theta=100, sigma=0.2,
                 normalize=True, new=False):
        self.symbol = symbol
        self.feature = feature
        self.n_features = n_features
        self.start = start
        self.end = end
        self.periods = periods
        self.x0 = x0
        self.kappa = kappa
        self.theta = theta
        self.sigma = sigma
        self.min_accuracy = min_accuracy
        self.normalize = normalize
        self.new = new
        self.action_space = ActionSpace()
        self._simulate_data()
        self._prepare_data()

    def _simulate_data(self):
        index = pd.date_range(start=self.start,
                    end=self.end, periods=self.periods)
        s = [self.x0]
        dt = (index[-1] - index[0]).days / 365 / self.periods
        for t in range(1, len(index)):
            s_ = (s[t - 1] + self.kappa * (self.theta - s[t - 1]) * dt +
                  s[t - 1] * self.sigma * math.sqrt(dt) * random.gauss(0, 1))
            s.append(s_)
        
        self.data = pd.DataFrame(s, columns=[self.symbol], index=index)

    def _prepare_data(self):
        self.data['r'] = np.log(self.data / self.data.shift(1))
        self.data.dropna(inplace=True)
        if self.normalize:
            self.mu = self.data.mean()
            self.std = self.data.std()
            self.data_ = (self.data - self.mu) / self.std
        else:
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            self.data_ = self.data.copy()
        self.data['d'] = np.where(self.data['r'] > 0, 1, 0)
        self.data['d'] = self.data['d'].astype(int)

    def _get_state(self):
        return self.data_[self.feature].iloc[self.bar -
                                self.n_features:self.bar]
        
    def seed(self, seed):
        random.seed(seed)
        np.random.seed(seed)
        tf.random.set_random_seed(seed)
        
    def reset(self):
        if self.new:
            self._simulate_data()
            self._prepare_data()
        self.treward = 0
        self.accuracy = 0
        self.bar = self.n_features
        state = self._get_state()
        return state.values, {}

    def step(self, action):
        if action == self.data['d'].iloc[self.bar]:
            correct = True
        else:
            correct = False
        reward = 1 if correct else 0 
        self.treward += reward
        self.bar += 1
        self.accuracy = self.treward / (self.bar - self.n_features)
        if self.bar >= len(self.data):
            done = True
        elif reward == 1:
            done = False
        elif (self.accuracy < self.min_accuracy and
              self.bar > self.n_features + 15):
            done = True
        else:
            done = False
        next_state = self.data_[self.feature].iloc[
            self.bar - self.n_features:self.bar].values
        return next_state, reward, done, False, {}
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CHAPTER 7

Dynamic Hedging

Before the advent of Black-Scholes, option markets were sparse and thinly traded. Now
they are among the largest and most active security markets. The change is attributed
by many to the Black-Scholes model, since it provides a benchmark for valuation and
(via the arbitrage argument) a method for replicating or hedging options positions.

—Duffie (1998)

Chapter 6 uses deep Q-learning (DQL) to learn how to beat the markets, that is, to
learn how to enter long and short positions in a financial instrument in a way that
outperforms a benchmark strategy such as, for example, simply going long on the
financial instrument. This can be interpreted as trying to prove the efficient market
hypothesis (EMH) wrong. Simply speaking, the so-called weak-form EMH postulates
that market-observed prices reflect all publicly available information. Timmermann
and Granger (2004) provide a modern perspective on and definition of the EMH.

In option pricing—or more generally, derivatives pricing—one generally takes the
viewpoint that the market is always right and that one can leverage what is observed
in the markets to value derivative instruments whose prices might not be directly
observable. In other words, one trusts that markets are efficient and that the EMH
holds. This in turn builds the basis for strong arbitrage pricing arguments: two finan‐
cial instruments have to have the same price if they generate the exact same payoffs in
the future. A portfolio of, say, a stock and a bond position that pays off the same in
the future as a European call option on the stock—so the argument goes—therefore
must have the same market price.

Mathematical finance researchers have proposed different models that leverage the
EMH and arbitrage arguments to derive values for derivative instruments. This chap‐
ter focuses on the seminal works by Black and Scholes (1973) and Merton (1973),
which we will refer to together hereafter as BSM73. In this context, refer also the sur‐
vey paper by Duffie (1998).
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The next section introduces the major elements of the model, discusses delta hedging
and option replication, and illustrates numerically how option replication can be
accomplished through dynamically trading a risky and a risk-free asset—say, a stock
and a bond. In this context, dynamic hedging, delta hedging, dynamic replication, and
option replication are used interchangeably, although there might be differences in
practice concerning their goals and implementations. Taleb (1996) provides an in-
depth treatment of the theoretical and practical aspects of dynamic hedging. “Hedg‐
ing Environment” on page 115 develops a financial environment that is suited to
simulating the dynamic replication of an option. “Hedging Agent” on page 121
adjusts the DQL agent from “DQLAgent Class” on page 100 so that the resulting
HedgingAgent class can learn option replication in the model of BSM73. The agent
learns the dynamic replication of a European call option just by observing a subset of
the model parameters and the option price. As is usual throughout the book, the
agent does not have any knowledge of the model itself (i.e., it engages in “model-free”
learning), nor does it have any knowledge of the delta or how the delta can be derived
and used.

Delta Hedging
This section discusses the seminal option pricing model by BSM73 and how to imple‐
ment delta hedging. The BSM73 model is based on geometric Brownian motion
(GBM). GBM is a process for describing the evolution of stochastic quantities in con‐
tinuous time. The resulting prices are log-normally distributed, while the resulting
returns are normally distributed.

The BSM73 model assumes that there are two traded assets, a risky one and a risk-
free one. In BSM73, the GBM describes the stochastic evolution of the risky asset,
such as a stock or an equity index. The stochastic differential equation (SDE) for the
GBM is as follows:

dSt = μStdt + σStdZt

The variables have the following meanings: St  is the index level at time t , μ is the con‐
stant drift factor, σ is the constant volatility (= standard deviation of returns) of S ,
and Zt  is a standard, arithmetic Brownian motion (or Wiener process).

In general, a fixed initial value for S0 is assumed as an initial boundary condition. In a
risk-neutral pricing context, the constant drift factor μ is replaced by the constant
risk-free short rate r , leading to the following alternative SDE describing the evolu‐
tion of the marginal return of the risky asset:

dSt

St
= rdt + σdZt
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1 Many fast-growing technology companies also have a history of not paying any dividends, for example.

This illustrates the normal distribution of the marginal returns. Given some initial
value B0, the returns process of the risk-free asset, such as a bond or a money market
account, is deterministic:

d Bt

Bt
= e rt

In this version of the BSM73 model, no dividends are assumed such that the risky
asset is generally thought of as an equity index or a similar financial instrument
without any dividend payments.1

Now consider a European call option on the risky asset with fixed strike price K  and
a fixed maturity date T . The payoff h T  of the option at maturity is given by this
equation:

h T = max (ST - K ,0)

On the one hand, such an option gives the right to buy the risky asset at the strike
price at maturity. This is advantageous whenever ST > K  holds at maturity. On the
other hand, there is no obligation for the option holder to do so. In other words, the
option holder either realizes a positive payoff at maturity or realizes a payoff of zero
as the fixed minimum—that is, the option expires worthless. It can be shown that the
arbitrage-free value of the option at time t  is given by the following analytical
formula:

Ct
BSM 73(St ,K ,T ,t ,r ,σ) = St�(d1) - e -r (T -t )K�(d2)

where

�(d) =
1
2π ∫

-∞

d

e -
1
2 x 2

dx

d1 = log
St

K + (r +
σ 2

2 )(T - t)

σ T - t

d2 = log
St

K + (r -
σ 2

2 )(T - t)

σ T - t
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Baxter and Rennie (1996) provide more details about the BSM73 model and how to
derive the pricing formula through arbitrage reasoning. It also explains the methods
from stochastic calculus that are needed in continuous-time pricing models. Hilpisch
(2015) provides details about numerical methods related to this and similar option
pricing models, such as Monte Carlo simulation (MCS), and their implementation in
Python. “BSM (1973) Formula” on page 127 shows the Python module that
implements the BSM73 pricing formula for European call options. Its application is
straightforward once the model parameters are fixed. To get started, implement the
usual imports:

In [1]: import math
        import random
        import numpy as np
        import pandas as pd
        from scipy import stats
        from pylab import plt, mpl

In [2]: plt.style.use('seaborn-v0_8')
        mpl.rcParams['figure.dpi'] = 300
        mpl.rcParams['savefig.dpi'] = 300
        mpl.rcParams['font.family'] = 'serif'
        np.set_printoptions(suppress=True)

Second, implement the import and application of the bsm_call_value() valuation
function for BSM73:

In [3]: from bsm73 import bsm_call_value

In [4]: S0 = 100  
        K = 100  
        T = 1.  
        t = 0.  
        r = 0.05  
        sigma = 0.2  

In [5]: bsm_call_value(S0, K, T, t, r, sigma)
Out[5]: 10.450583572185565

Initial stock price

Strike price of the option

Maturity date in year fractions

Current date in year fractions

Constant risk-free short rate

Constant volatility factor
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Simply speaking, there are two arguments to derive the arbitrage-free value of a
European call option as embodied by the BSM73 formula:

Dynamic hedging
You can hedge the price risk of the European option by continuously trading in
the underlying financial instrument in a way that makes the overall risk become
zero. In equilibrium, the portfolio of the option and the hedge position must
yield the risk-free rate because it is risk free by construction.

Option replication
You can set up a replication portfolio consisting of positions in the risky and the
risk-free asset. This portfolio is continuously rebalanced so that its value equals
the value of the European option at any point in time. By arbitrage reasoning, the
value of the option and the value of the replication portfolio at any time must be
equal.

These two arguments represent two sides of the same coin. At their core, they both
make use of the so-called delta of the option. The delta of an option measures the
change in the option’s value for a marginal price change in the risky asset from which
the option derives its value. Formally, the delta or Δ of an option is defined as the
first partial derivative of the option valuation formula with regard to the price of the
underlying asset:

Δ ≡
∂C
∂S

For the BSM73 model, with given parameters K ,T ,r ,σ, one gets the following:

Δt
BSM 73 ≡

∂Ct
BSM 73

∂St
= �(d1)

This derivation holds true for a European call option written on a single unit of the
financial instrument. By construction, investing Δt

BSM 73 · St  in the underlying instru‐
ment shows the same profit and loss (P&L) over very short periods as the option.
Analogously, when going short on such a position, that is, -Δt

BSM 73 · St , the change in
the option value is offset by the hedge position over short periods.
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Continuous Versus Discrete Time

Delta hedging and option replication as described in this section
are based on a financial model in continuous time. This implies
that traders are assumed to be able to trade basically at every
instant of the relevant time interval. As a consequence, theoretical
delta hedging and dynamic replication of an option will lead to
infinitely many trades. This is only possible in theory because tech‐
nology constraints prohibit trading at the speed of light. In a simi‐
lar vein, nonzero transaction costs would lead to infinite hedging
and replication costs, rendering continuous trading impossible too.
Taleb (1996) summarizes: “Perhaps the largest misconception in
the financial markets attends the definition and meaning of the
delta. Every operator instinctively knows that hedging in continu‐
ous time will never be possible.” Therefore, in practical applica‐
tions, delta hedging and dynamic option replication need to be
implemented at discrete points in time. The time delta between
two such points should not, however, be too large because hedging
and replication errors would increase as a consequence.

Against this background, a replication portfolio φt  for a given European call option at
a certain point in time t  is given by the following:

φt = sSt + bBt

with

s = Δt
BSM 73

b = Ct
BSM 73 - sSt

This approach can easily be illustrated in discrete time based on the MCS of the
GBM. An exact discretization for the GBM—that is, one that converges on the corre‐
sponding continuous-time process for ever smaller time intervals—is given by the 
Euler discretization scheme. Assuming that t  is taken from a discrete set of equidis‐
tant points in time, t ∈ {0,Δ,2Δ,...,T }, the following difference equations for the con‐
tinuous market model ensue:

ΔSt

St
= exp ((r -

σ 2

2 )Δt + σ Δtzt)
ΔBt

Bt
= e rΔt
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Here, Δt  is the fixed distance between two points in time, Δ X t = X t - X t -Δt  is the
absolute change in the price of asset X , and zt  is a standard normally distributed ran‐
dom variable.

The following Python function implements MCS for the GBM. Figure 7-1 shows the
resulting process:

In [6]: random.seed(1000)

In [7]: def simulate_gbm(S0, T, r, sigma, steps=100):
            gbm = [S0]
            dt = T / steps
            for t in range(1, steps + 1):
                st = gbm[-1] * math.exp((r - sigma ** 2 / 2) * dt
                            + sigma * math.sqrt(dt) * random.gauss(0, 1))
                gbm.append(st)
            return gbm

In [8]: gbm = simulate_gbm(S0, T, r, sigma)

In [9]: plt.plot(gbm, lw=1.0, c='b')
        plt.xlabel('time step')
        plt.ylabel('stock price');

Figure 7-1. Simulated price process for BSM73 model

It is noteworthy that the Δ BSM 73 of a European call option on a single unit of the
underlying financial instrument only takes on values between 0 and 1. Figure 7-2
shows this for a larger number of different prices of the underlying asset:
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In [10]: def bsm_delta(St, K, T, t, r, sigma):
             d1 = ((math.log(St / K) + (r + 0.5 * sigma ** 2) * (T - t)) /
                   (sigma * math.sqrt(T - t)))
             return stats.norm.cdf(d1, 0, 1)

In [11]: S_ = range(40, 181, 4)

In [12]: d = [bsm_delta(s, K, T, 0, r, sigma) for s in S_]

In [13]: plt.plot(S_, d, lw=1.0, c='b')
         plt.xlabel('stock price')
         plt.ylabel('delta');

Figure 7-2. Delta for European call option in BSM73 model

Equipped with the function for Δt
BSM 73, portfolio replication in the BSM73 model can

be simulated in discrete time as follows. Figure 7-3 shows the option values and repli‐
cation portfolio values over time. The replication seems to be almost perfect:

In [14]: dt = T / (len(gbm) - 1)

In [15]: bond = [math.exp(r * i * dt) for i in range(len(gbm))]

In [16]: def option_replication():
             res = pd.DataFrame()
             for i in range(len(gbm) - 1):
                 C = bsm_call_value(gbm[i], K, T, i * dt, r, sigma)
                 if i == 0:
                     s = bsm_delta(gbm[i], K, T, i * dt, r, sigma)  
                     b = (C - s * gbm[i]) / bond[i]  
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                 else:
                     V = s * gbm[i] + b * bond[i]  
                     s = bsm_delta(gbm[i], K, T, i * dt, r, sigma)  
                     b = (C - s * gbm[i]) / bond[i]  
                     df = pd.DataFrame({'St': gbm[i], 'C': C, 'V': V,
                                        's': s, 'b': b}, index=[0])  
                     res = pd.concat((res, df), ignore_index=True)  
             return res

In [17]: res = option_replication()

In [18]: res[['C', 'V']].plot(style=['b', 'r--'], lw=1)
         plt.xlabel('time step')
         plt.ylabel('value');

Derives the initial position in the risky asset

Does the same for the risk-free asset

Calculates the payoff given the previously set up replication portfolio

Updates the position of the risky asset

Does the same for the risk-free asset

Collects all relevant parameters and values in a DataFrame object

Figure 7-3. Option value and replication portfolio value over time
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To help you gain more insights into how good the replication is, Figure 7-4 shows the
profit and loss values of the replication process. The mean absolute error (MAE) and
the mean squared error (MSE) are also calculated. They confirm that the discrete-
time replication approach works quite well. The major parameter influencing the
replication accuracy is the number of steps used for the discretization. The higher
this number—that is, the more fine-grained the discretization—the better the results
in general. The results also depend on the volatility assumed, but this parameter is
kept constant throughout:

In [19]: (res['V'] - res['C']).mean()  
Out[19]: -0.0009828178536543022

In [20]: ((res['V'] - res['C']) ** 2).mean()  
Out[20]: 0.003755015460265298

In [21]: (res['V'] - res['C']).hist(bins=35, color='b')
         plt.xlabel('P&L')
         plt.ylabel('frequency');

Calculates the MAE

Calculates the MSE

Figure 7-4. Histogram of the replication errors for the European call option
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Replication in Discrete Time

In a sandbox environment of financial markets such as the BSM73
model, dynamic replication of the European call option works
quite well, even in discrete time. It is quite easy to reduce the aver‐
age hedging errors by making the discretization of the relevant
time interval finer. In practice, additional risk factors would arise,
such as changes in volatility, which is assumed to be constant in the
BSM73 model. There are also limits on how often one can reba‐
lance a portfolio, given that every transaction leads to nonzero
transaction costs.

Hedging Environment
The whole approach of delta hedging—or rather, dynamic option replication using
the delta of an option—as presented in “Delta Hedging” on page 106—rests on know‐
ing and leveraging the details of the BSM73 model with its resulting analytical formu‐
las for the European call option value and the delta. The idea of applying DQL in this
context is to learn optimal replication strategies only based on observable market
parameters and feedback—that is, penalties—from replication errors.

This section develops a hedging environment that is appropriate for the task. The
first major difference from the environment developed in Chapter 6 is that the action
space changes from a discrete one to a continuous one. The agent is supposed to
choose a position in the underlying financial instrument of the European call option
to be hedged that is between 0 and 1 and that can take on any value in between. This,
for example, is already reflected in the .sample() method of the action_space class:

In [22]: class observation_space:
             def __init__(self, n):
                 self.shape = (n,)

In [23]: class action_space:
             def __init__(self, n):
                 self.n = n
             def seed(self, seed):
                 random.seed(seed)
             def sample(self):
                 return random.random()  

Samples a random floating-point number from the unit interval

The Hedging class, which represents the environment with which the agent interacts,
takes as input primarily the parameters of the BSM73 model:

In [24]: class Hedging:
             def __init__(self, S0, K_, T, r_, sigma_, steps):
                 self.initial_value = S0
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                 self.strike_ = K_  
                 self.maturity = T
                 self.short_rate_ = r_  
                 self.volatility_ = sigma_  
                 self.steps = steps
                 self.observation_space = observation_space(8)
                 self.osn = self.observation_space.shape[0]
                 self.action_space = action_space(1)
                 self._simulate_data()
                 self.portfolios = pd.DataFrame()
                 self.episode = 0

These parameters can be passed as iterable objects with multiple values.

The Hedging class implements the MCS for the GBM based on the Euler discretiza‐
tion scheme. In this context, the parameter values for the strike, the short rate, and
the volatility are chosen randomly:

In [25]: class Hedging(Hedging):
             def _simulate_data(self):
                 s = [self.initial_value]
                 self.strike = random.choice(self.strike_)  
                 self.short_rate = random.choice(self.short_rate_)  
                 self.volatility = random.choice(self.volatility_)  
                 self.dt = self.maturity / self.steps
                 for t in range(1, self.steps + 1):
                     st = s[t - 1] * math.exp(
                       ((self.short_rate - self.volatility ** 2 / 2) * self.dt +
                         self.volatility * math.sqrt(self.dt) *
                           random.gauss(0, 1)))  
                     s.append(st)
                 self.data = pd.DataFrame(s, columns=['index'])
                 self.data['bond'] = np.exp(self.short_rate *
                                     np.arange(len(self.data)) * self.dt)

Randomly selects the parameter values

Implements the Euler discretization scheme

The state of the environment is given by eight different, market observable or known
parameters:

• Current price of the underlying
• Current price of the bond
• Time-to-maturity for the option
• Option value according to BSM73
• Strike price of the option
• Relevant short rate
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• Stock position chosen by the agent
• Bond position derived from the option value and stock position

In [26]: class Hedging(Hedging):
             def _get_state(self):
                 St = self.data['index'].iloc[self.bar]
                 Bt = self.data['bond'].iloc[self.bar]
                 ttm = self.maturity - self.bar * self.dt
                 if ttm > 0:
                     Ct = bsm_call_value(St, self.strike,
                                    self.maturity, self.bar * self.dt,
                                    self.short_rate, self.volatility)
                 else:
                     Ct = max(St - self.strike, 0)
                 return np.array([St, Bt, ttm, Ct, self.strike, self.short_rate,
                                  self.stock, self.bond]), {}
             def seed(self, seed=None):
                 if seed is not None:
                     random.seed(seed)
             def reset(self):
                 self.bar = 0
                 self.bond = 0
                 self.stock = 0
                 self.treward = 0
                 self.episode += 1
                 self._simulate_data()
                 self.state, _ = self._get_state()
                 return self.state, _

The .step() method is, as before, at the core of the environment. Here, it distin‐
guishes between the initial action and all subsequent actions. The reward is calculated
based on the P&L that the replication portfolio generates for the step. All relevant
data points are collected for further analysis after the training of the reinforcement
learning (RL) agent:

In [27]: class Hedging(Hedging):
             def step(self, action):
                 if self.bar == 0:  
                     reward = 0
                     self.bar += 1
                     self.stock = float(action)  
                     self.bond = ((self.state[3] - self.stock * self.state[0]) /
                                  self.state[1])  
                     self.new_state, _ = self._get_state()
                 else:
                     self.bar += 1
                     self.new_state, _ = self._get_state()
                     phi_value = (self.stock * self.new_state[0] +
                            self.bond * self.new_state[1])  
                     pl = phi_value - self.new_state[3]  
                     df = pd.DataFrame({'e': self.episode, 's': self.stock,
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                                        'b': self.bond, 'phi': phi_value,
                                        'C': self.new_state[3], 'p&l[$]': pl,
                                        'p&l[%]': pl / max(self.new_state[3],
                                                           1e-4) * 100,
                                        'St': self.new_state[0],
                                        'Bt': self.new_state[1],
                                        'K': self.strike, 'r': self.short_rate,
                                        'sigma': self.volatility},
                                       index=[0])  
                     self.portfolios = pd.concat((self.portfolios, df),
                                                 ignore_index=True)  
                     reward = -(phi_value - self.new_state[3]) ** 2  
                     self.stock = float(action)  
                     self.bond = ((self.new_state[3] -
                                   self.stock * self.new_state[0]) /
                                   self.new_state[1])  
                 if self.bar == len(self.data) - 1:  
                     done = True
                 else:
                     done = False
                 self.state = self.new_state
                 return self.state, float(reward), done, False, {}

The initial action is treated separately.

Updates the stock position of the replication portfolio.

Calculates and updates the bond position.

Calculates the payoff of the replication portfolio.

Derives the P&L given the replication portfolio payoff and the option value.

Collects the data points for the environment in a DataFrame object.

Derives the reward based on the squared P&L, that is, the squared difference
between the replicating portfolio and the call option value.

Hedging takes place until one step before maturity.

The following Python code instantiates a Hedging environment object and shows the
first simulated price process for the risky asset (see Figure 7-5):

In [28]: S0 = 100.

In [29]: hedging = Hedging(S0=S0,
                       K_=np.array([0.9, 0.95, 1., 1.05, 1.10]) * S0,
                       T=1.0, r_=[0, 0.01, 0.05],
                       sigma_=[0.1, 0.15, 0.2], steps=2 * 252)
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In [30]: hedging.seed(750)

In [31]: hedging._simulate_data()
         (hedging.data / hedging.data.iloc[0]).plot(
             lw=1.0, style=['r--', 'b-.'])
         plt.xlabel('time step')
         plt.ylabel('price');

Figure 7-5. Normalized price processes for the risky and the risk-free asset

With the Hedging environment instantiated, the performance of a random hedging
agent can be easily illustrated. The random hedging agent samples the stock position
for the replication portfolio uniformly from the unit interval. Often, the portfolio
payoff deviates significantly from the option value (see Figure 7-6). Also, the portfo‐
lio payoff can take on significantly negative values, which is excluded by definition
for the option value.

In [32]: hedging.reset()
         for _ in range(hedging.steps - 1):
             hedging.step(hedging.action_space.sample())

In [33]: hedging.portfolios.head().round(4)
Out[33]:    e       s        b     phi       C  p&l[$]  p&l[%]        St   Bt \
         0  1  0.2678 -22.4876  3.8871  3.7649  0.1222  3.2447   98.4880  1.0
         1  1  0.5623 -51.6103  4.7116  4.3306  0.3809  8.7957  100.1716  1.0
         2  1  0.5996 -55.7307  4.3350  4.3258  0.0092  0.2131  100.1789  1.0
         3  1  0.8360 -79.4251  4.7708  4.5103  0.2605  5.7760  100.7111  1.0
         4  1  0.0274   1.7478  4.5084  4.4776  0.0308  0.6877  100.6422  1.0
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                K  r  sigma
         0  110.0  0    0.2
         1  110.0  0    0.2
         2  110.0  0    0.2
         3  110.0  0    0.2
         4  110.0  0    0.2

In [34]: hedging.portfolios[['C', 'phi']].plot(
             style=['r--', 'b-'], lw=1, alpha=0.7)
         plt.xlabel('time step')
         plt.ylabel('value');

Figure 7-6. Option values (C) and random replication portfolio payoffs (phi)

Figure 7-7 shows the histogram of the P&L in absolute terms for the random replica‐
tion strategy:

In [35]: hedging.portfolios['p&l[$]'].apply(abs).sum()
Out[35]: 133.4348359335141

In [36]: hedging.portfolios['p&l[$]'].hist(bins=35, color='b')
         plt.xlabel('P&L')
         plt.ylabel('frequency');
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Figure 7-7. Histogram of the P&L for the random replication strategy

Hedging Agent
This section develops a DQL agent that learns how to dynamically replicate a Euro‐
pean call option through interaction with the Hedging environment. Relative to the
DQLAgent from “DQLAgent Class” on page 100, several changes need to be made.
One major change is that the agent has to choose an action from an infinite number
of options. This is usually called an optimal control problem. An action represents a
value between 0 and 1, in line with the possible values for the delta of a European call
option in the BSM73 model.

The following code inherits from the DQLAgent class from “DQLAgent Class” on page
100. The first major change is that the output layer now yields one floating-point
value only. It gives the discounted total rewards according to the deep neural network
(DNN), given the state of the environment and a portfolio consisting of a stock and a
bond position:

In [37]: from dqlagent import *

In [38]: random.seed(100)
         tf.random.set_seed(100)

In [39]: opt = keras.optimizers.legacy.Adam

In [40]: class HedgingAgent(DQLAgent):
             def _create_model(self, hu, lr):
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                 self.model = Sequential()
                 self.model.add(Dense(hu, input_dim=self.n_features,
                                 activation='relu'))
                 self.model.add(Dense(hu, activation='relu'))
                 self.model.add(Dense(1, activation='linear'))  
                 self.model.compile(loss='mse',
                         optimizer=opt(learning_rate=lr))

Single valued linear output layer

The next major change is to the selection of an optimal action. This is accomplished
through an optimization procedure. Simply speaking, the agent chooses the stock
position that maximizes the total reward according to the DNN:

In [41]: from scipy.optimize import minimize

In [42]: class HedgingAgent(HedgingAgent):
             def opt_action(self, state):
                 bnds = [(0, 1)]  
                 def f(state, x):  
                     s = state.copy()
                     s[0, 6] = x  
                     s[0, 7] = ((s[0, 3] - x * s[0, 0]) / s[0, 1])  
                     return self.model.predict(s)[0, 0]  
                 try:
                     action = minimize(lambda x: -f(state, x), 0.5,
                                       bounds=bnds, method='Powell',
                                      )['x'][0]  
                 except:
                     action = self.env.stock
                 return action

             def act(self, state):
                 if random.random() <= self.epsilon:
                     return self.env.action_space.sample()
                 action = self.opt_action(state)  
                 return action

The bounds for the action (stock position) to be chosen.

The function f gives the total reward for a given state-action pair.

The optimization happens over the possible actions (the values for delta, that is,
the stock position).

The bond position is derived from the current option value and the value of the
stock position.

The neural network predicts the total reward for taking a certain action in the
given state and returns it.
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The optimization procedure minimizes the negative value that function f returns
(that is, it maximizes its value).

The optimal action (stock position) is retrieved for exploitation.

During replay, the agent derives the discounted, delayed reward based on the optimal
action for a given state:

In [43]: class HedgingAgent(HedgingAgent):
             def replay(self):
                 batch = random.sample(self.memory, self.batch_size)
                 for state, action, next_state, reward, done in batch:
                     target = reward
                     if not done:
                         ns = next_state.copy()
                         action = self.opt_action(ns)  
                         ns[0, 6] = action  
                         ns[0, 7] = ((ns[0, 3] -
                             action * ns[0, 0]) / ns[0, 1])  
                         target += (self.gamma *
                             self.model.predict(ns)[0, 0])  
                     self.model.fit(state, np.array([target]), epochs=1,
                                    verbose=False)
                 if self.epsilon > self.epsilon_min:
                     self.epsilon *= self.epsilon_decay

The optimal action for the next state is retrieved.

The next state array is updated accordingly for the optimal stock position.

It is also updated for the resulting bond position.

The discounted, delayed reward is predicted.

Finally, the following Python code implements a simplified .test() method that also
relies on the optimization procedure for the optimal action to be chosen based on the
DNN’s prediction. The training of this agent is rather compute intensive, which is
reflected in the long wall time for a relatively small number of episodes:

In [44]: class HedgingAgent(HedgingAgent):
             def test(self, episodes, verbose=True):
                 for e in range(1, episodes + 1):
                     state, _ = self.env.reset()
                     state = self._reshape(state)
                     treward = 0
                     for _ in range(1, len(self.env.data) + 1):
                         action = self.opt_action(state)
                         state, reward, done, trunc, _ = self.env.step(action)
                         state = self._reshape(state)
                         treward += reward
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                         if done:
                             templ = f'total penalty={treward:4.2f}'
                             if verbose:
                                 print(templ)
                             break

In [45]: random.seed(100)
         np.random.seed(100)
         tf.random.set_seed(100)

In [46]: hedgingagent = HedgingAgent('SYM', feature=None, n_features=8,
                              env=hedging, hu=128, lr=0.0001)

In [47]: episodes = 250

In [48]: %time hedgingagent.learn(episodes)
         episode= 250 | treward=-15.000 | max= -7.8044
         CPU times: user 14min 53s, sys: 3min 1s, total: 17min 54s
         Wall time: 14min 54s

In [49]: hedgingagent.epsilon
Out[49]: 0.5348427211156283

The performance of the agent is quite good, given that it does not know anything
about the BSM73 model or the delta in this model for a European call option. In
many instances, the agent comes up with almost perfect replication portfolios, lead‐
ing to very small replication errors. The average replication error is also close to zero.
Figure 7-8 shows the evolution of the stock price, the European call option value, and
the value of the replication portfolio set up by the hedging agent. The figure only
shows a subset of the total data points for one particular test run:

In [50]: %time hedgingagent.test(10)
         total penalty=-10.61
         total penalty=-9.11
         total penalty=-1.26
         total penalty=-4.90
         total penalty=-2.79
         total penalty=-7.03
         total penalty=-7.55
         total penalty=-3.15
         total penalty=-17.08
         total penalty=-19.22
         CPU times: user 1min 33s, sys: 15.1 s, total: 1min 48s
         Wall time: 1min 30s

In [51]: n = max(hedgingagent.env.portfolios['e'])  
         n -= 1  

In [52]: hedgingagent.env.portfolios[
             hedgingagent.env.portfolios['e'] == n]['p&l[$]'].describe()  
Out[52]: count    503.000000
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         mean      -0.013716
         std        0.183946
         min       -0.883232
         25%       -0.093197
         50%       -0.000380
         75%        0.068762
         max        0.639175
         Name: p&l[$], dtype: float64

In [53]: p = hedgingagent.env.portfolios[
             hedgingagent.env.portfolios['e'] == n].iloc[0][
             ['K', 'r', 'sigma']]

In [54]: title = f"CALL | K={p['K']:.1f} | r={p['r']} | sigma={p['sigma']}"

In [55]: hedgingagent.env.portfolios[
             hedgingagent.env.portfolios['e'] == n][
             ['phi', 'C', 'St']].iloc[:100].plot(
             secondary_y='St', title=title, style=['r-', 'b--', 'g:'], lw=1)
         plt.xlabel('time step')
         plt.ylabel('value');

Chooses a specific test run

Calculates statistics for that run

Figure 7-8. Option and replication portfolio values compared
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Figure 7-9 shows the histogram of the replication errors for that particular test run:

In [56]: hedgingagent.env.portfolios[
             hedgingagent.env.portfolios['e'] == n]['p&l[$]'].hist(
                 bins=35, color='blue')
         plt.title(title)
         plt.xlabel('P&L')
         plt.ylabel('frequency');

Figure 7-9. Histogram of the replication errors

Conclusions
Dynamic hedging and option replication are key methods in mathematical finance
for the pricing and risk management of options and other derivative instruments.
Generally, for their implementation, these methods rely on a specific financial model
that relates relevant model (market) parameters with the value of the derivative
instrument at hand. This chapter shows that DQL as an algorithm can learn almost
perfect replication strategies based on interacting with a hedging environment that
only provides a parsimonious set of parameters and values but no information about
the financial model or the actual delta of the option.

While previous chapters focus on discrete action spaces, the hedging problem in this
chapter represents an optimal control problem in that the action to be chosen is a
stock position that can take on any value between 0 and 1. To this end, the DNN of
the DQL agent predicts the total reward for a specific replication portfolio, given a
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certain state of the hedging environment. The agent chooses the action with the high‐
est predicted total reward. In the case of the hedging problem in this chapter, the
agent minimizes the total penalty, which is driven by the replication errors that the
agent’s strategy generates over the single steps.

All in all, the hedging agent learns dynamic option replication in a remarkably good
fashion. The observed replication errors are pretty small and, on average, close to
zero.
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BSM (1973) Formula
The following Python code implements the BSM73 European call option pricing for‐
mula as introduced in “Delta Hedging” on page 106:

#
# Valuation of European call options
# in Black-Scholes-Merton (1973) model
#
# (c) Dr. Yves J. Hilpisch
# Reinforcement Learning for Finance
#

from math import log, sqrt, exp
from scipy import stats
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def bsm_call_value(St, K, T, t, r, sigma):
    ''' Valuation of European call option in BSM model.
    Analytical formula.

    Parameters
    ==========
    St: float
        stock/index level at date/time t
    K: float
        fixed strike price
    T: float
        maturity date/time (in year fractions)
    t: float
        current data/time
    r: float
        constant risk-free short rate
    sigma: float
        volatility factor in diffusion term

    Returns
    =======
    value: float
        present value of the European call option
    '''
    St = float(St)
    d1 = (log(St / K) + (r + 0.5 * sigma ** 2) * (T - t)) / (sigma * sqrt(T - t))
    d2 = (log(St / K) + (r - 0.5 * sigma ** 2) * (T - t)) / (sigma * sqrt(T - t))
    # stats.norm.cdf --> cumulative distribution function
    #                    for normal distribution
    value = (St * stats.norm.cdf(d1, 0, 1) -
             K * exp(-r * (T - t)) * stats.norm.cdf(d2, 0, 1))
    return value
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CHAPTER 8

Dynamic Asset Allocation

Professional gamblers, who have to have an advantage, speak of “money manage‐
ment.” This refers to the tricky and all-important issue of how to achieve the greatest
profit from a favorable betting opportunity. You can be the world’s greatest poker
player, backgammon player, or handicapper, but if you can’t manage your money,
you’ll end up broke. The sad fact is, almost everyone who gambles goes broke in the
long run.

—Poundstone (2010)

The world economy has grown at a decent enough clip over the past two decades, at
more than 3% a year. Yet it has been left in the dust by growth in wealth. Between 2000
and 2020 the total stock rose from $160trn, or four times global output, to $510trn, or
six times output.

—The Economist (2023)

The challenge of asset allocation is a major problem in the financial domain, under‐
scored by the vast amounts of money that individuals and institutions must invest. It
is also a problem that started the quantitative revolution in finance with the seminal
work of Markowitz (1952) on “Portfolio Selection.” In this paper, Markowitz propo‐
ses a purely statistical approach for composing portfolios as compared to, say, the
fundamental analysis of companies and their stocks.

While the early work in this area focuses on the static, or nonrepeated, problem of
allocating funds across different assets, a more realistic way of approaching asset allo‐
cation is in its dynamic, or repeated, form. Like algorithmic trading and dynamic
hedging, dynamic asset allocation is a problem that fits well into the general frame‐
work of dynamic programming as introduced in Chapter 3. Therefore, it is a problem
that can also be tackled with deep Q-learning (DQL) to arrive at approximate,
numerical solutions. The paper by Merton (1969) represents an early work about
dynamic asset allocation in a continuous-time model where uncertainty is generated
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by geometric Brownian motion. He uses dynamic programming and the Bellman
principle to derive optimal solutions for several special cases, including a simple two-
asset case and a more realistic multiple-asset case with an infinite horizon.

This chapter addresses three cases for dynamically allocating assets. In the first case,
covered in the next section, two assets, a risky and a risk-free one, are available for
investment. “Two-Asset Case” on page 146 covers the case of two risky assets. Against
this background, “Three-Asset Case” on page 154 adds a third risky asset to the
investment set. From three assets, the generalization to four or more assets is
straightforward. Finally, “Equally Weighted Portfolio” on page 160 compares the
results in the three-asset case with the performance of an equally weighted portfolio.

Two-Fund Separation
The concept of two-fund separation dates back to Markowitz (1952). It states that in
equilibrium and under certain assumptions, financial market investors will hold a
combination of the risk-free asset and the risky market portfolio—and nothing else.
The market portfolio lies on the efficient frontier of the set of achievable risk-return
combinations. The efficient frontier represents all those portfolios that give the maxi‐
mum expected return for a given level of risk. In practical applications, the market
portfolio, which is not directly investable, is generally approximated by a broad stock
market index such as the S&P 500. The straight line connecting the risk-free asset to
the market portfolio in risk-return space is generally called the capital market line
(CML). For more details on this and related topics, see also Chapter 5 of Copeland,
Weston, and Shastri (2005).

Based on some simple numerical assumptions, the following Python code illustrates
the CML visually. Implement the usual imports and customization first:

In [1]: import math
        import random
        import numpy as np
        import pandas as pd
        from scipy import stats
        from pylab import plt, mpl

In [2]: plt.style.use('seaborn-v0_8')
        mpl.rcParams['figure.dpi'] = 300
        mpl.rcParams['savefig.dpi'] = 300
        mpl.rcParams['font.family'] = 'serif'
        np.set_printoptions(suppress=True)
        pd.set_option('display.float_format', lambda x: '%.3f' % x)
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Figure 8-1 shows an illustration of the CML. Without short selling, an investor can
achieve any risk-return combination on the line that connects the risk-free asset (the
triangle) to the market portfolio (the thick dot). If short selling is allowed, combina‐
tions to the right of the market portfolio are also achievable. Those portfolios would
represent leveraged positions in the market portfolio—each such position would be a
combination of a short position in the risk-free asset and a long position in the mar‐
ket portfolio that is greater than 100% of the investable capital. All in all, the CML
embodies one of the fundamental concepts in finance: an investor who is willing to
bear more risk can expect—everything else being equal—a higher return on their
investment:

In [3]: r = 0.025  
        beta = 0.2  
        sigma = 0.375  
        mu = r + beta * sigma  
        mu  
Out[3]: 0.1

In [4]: vol = np.linspace(0, 0.5)  
        ret = r + beta * vol  

In [5]: fig, ax = plt.subplots()
        plt.plot(vol, ret, 'b', label='capital market line (CML)')
        plt.plot(0, r, 'g^', label='riskless asset')
        plt.plot(sigma, mu, 'ro', label='market portfolio')
        plt.xlabel('volatility/risk')
        plt.ylabel('expected return')
        ax.set_xticks((0, sigma))
        ax.set_xticklabels((0, '$\sigma$',))
        ax.set_yticks((0, r, mu))
        ax.set_yticklabels((0, '$r$', '$\mu$'))
        plt.ylim(0, 0.15)
        plt.legend();

The return of the risk-free asset

The slope of the capital market line

The volatility of the market portfolio

The expected return of the market portfolio

The risk-return combinations to be plotted
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Figure 8-1. Capital market line (CML)

60/40 Portfolios

A popular investment strategy, proposed for decades by the asset
management industry and academia, is the so-called 60/40 portfo‐
lio, which allocates 60% of a portfolio to stocks and 40% to bonds.
Although bonds are not risk-free in general, the idea is similar to
two-fund separation. The addition of less risky bonds to a stock
portfolio reduces the overall risk of that portfolio while preserving
the long-term upside potential of the stock market through a larger
allocation to stocks. It has also often been observed that bond pri‐
ces and stock prices are negatively correlated, which can further
reduce portfolio risk. These characteristics should especially appeal
to a moderate-risk investor. However, in 2022, for example, this
kind of portfolio performed poorly, mainly driven by fast-rising
interest rates. For more background and details, refer to the com‐
mentary by Chisholm (2023), which also presents performance
data over multiple decades.
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In what follows, a DQL agent is trained to invest in the two types of assets. The risk-
free asset simply yields a fixed return. The risky asset is modeled as a geometric
Brownian motion (GBM) as in Merton (1969), Black and Scholes (1973), and Merton
(1973). The approach in this section is similar to the one used in Chapter 7. There‐
fore, the Investing environment developed step-by-step in what follows resembles
the Hedging environment. As before, two helper classes are used. The agent can
choose the position in the risky asset from the unit interval. A value of 0 means no
investment in the risky asset, and a value of 1 means 100% investment in it. The dif‐
ference between the position invested in the risky asset and 1 or 100% is invested in
the risk-free asset:

In [6]: class observation_space:
            def __init__(self, n):
                self.shape = (n,)

In [7]: class action_space:
            def __init__(self, n):
                self.n = n

            def seed(self, seed):
                random.seed(seed)

            def sample(self):
                return random.random()  

Samples a random action (stock investment) from the unit interval

As in the dynamic hedging case, the Investing environment takes multiple parame‐
ters as input for the simulation of the GBM. It also keeps track of the initial balance
and the two most recent portfolio values:

In [8]: class Investing:
            def __init__(self, S0, T, r_, mu_, sigma_, steps, amount):
                self.initial_value = S0
                self.maturity = T
                self.short_rate_ = r_  
                self.index_drift_ = mu_  
                self.volatility_ = sigma_  
                self.steps = steps
                self.initial_balance = amount  
                self.portfolio_value = amount  
                self.portfolio_value_new = amount  
                self.observation_space = observation_space(4)
                self.osn = self.observation_space.shape[0]
                self.action_space = action_space(1)
                self._generate_data()
                self.portfolios = pd.DataFrame()
                self.episode = 0
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These parameters can be passed as iterable objects with multiple values.

The initial investment is stored.

The current portfolio value is initialized.

The new portfolio value is initialized.

The next method simulates the paths for the risky asset (X) and calculates the values
for the risk-free asset (Y):

In [9]: class Investing(Investing):
            def _generate_data(self):
                s = [self.initial_value]
                self.short_rate = random.choice(self.short_rate_)  
                self.index_drift = random.choice(self.index_drift_)  
                self.volatility = random.choice(self.volatility_)  
                self.dt = self.maturity / self.steps
                for t in range(1, self.steps + 1):
                    st = s[t - 1] * math.exp(((self.index_drift -
                                self.volatility ** 2 / 2) * self.dt +
                                self.volatility * math.sqrt(
                                    self.dt) * random.gauss(0, 1))
                    )  
                    s.append(st)
                self.data = pd.DataFrame(s, columns=['Xt'])
                self.data['Yt'] = self.initial_value * np.exp(
                    self.short_rate * np.arange(len(self.data)) * self.dt)  

Randomly selects the parameter values

Simulates the risky asset path

Calculates the risk-free asset values

The following methods only require minor adjustments compared with the Hedging
environment:

In [10]: class Investing(Investing):
             def _get_state(self):
                 Xt = self.data['Xt'].iloc[self.bar]
                 Yt = self.data['Yt'].iloc[self.bar]
                 return np.array([Xt, Yt, self.xt, self.yt]), {}

             def seed(self, seed=None):
                 if seed is not None:
                     random.seed(seed)

             def reset(self):
                 self.bar = 0
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                 self.xt = 0
                 self.yt = 0
                 self.treward = 0
                 self.portfolio_value = self.initial_balance
                 self.portfolio_value_new = self.initial_balance
                 self.episode += 1
                 self._generate_data()
                 self.state, _ = self._get_state()
                 return self.state, _

With the final two methods, the Python class for the Investing environment is com‐
plete. The .add_results() method allows the collection of relevant data points for
all episodes and steps. This simplifies further analyses of the results after the learning
and testing phases:

In [11]: class Investing(Investing):
             def add_results(self, pl):
                 df = pd.DataFrame({'e': self.episode, 'xt': self.xt,
                            'yt': self.yt, 'pv': self.portfolio_value,
                            'pv_new': self.portfolio_value_new, 'p&l[$]': pl,
                            'p&l[%]': pl / self.portfolio_value_new,
                            'Xt': self.state[0],  'Yt': self.state[1],
                            'Xt_new': self.new_state[0],
                            'Yt_new': self.new_state[1],
                            'r': self.short_rate, 'mu': self.index_drift,
                            'sigma': self.volatility}, index=[0])
                 self.portfolios = pd.concat((self.portfolios, df),
                                             ignore_index=True)

             def step(self, action):
                 self.bar += 1
                 self.new_state, _ = self._get_state()
                 if self.bar == 1:  
                     self.xt = action 
                     self.yt = (1 - action) 
                     pl = 0.
                     reward = 0.
                     self.add_results(pl)
                 else:
                     self.portfolio_value_new = (
                         self.xt * self.portfolio_value *
                         self.new_state[0] / self.state[0] +
                         self.yt * self.portfolio_value *
                         self.new_state[1] / self.state[1])  
                     pl = self.portfolio_value_new - self.portfolio_value  
                     self.xt = action 
                     self.yt = (1 - action) 
                     self.add_results(pl)  
                     reward = pl  
                     self.portfolio_value = self.portfolio_value_new  
                 if self.bar == len(self.data) - 1:
                     done = True
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                 else:
                     done = False
                 self.state = self.new_state
                 return self.state, reward, done, False, {}

The initial action is treated separately.

The position for the risky asset is set.

The position for the risk-free asset is set.

The new portfolio value is calculated given the previous asset allocation.

The profit or loss is calculated in absolute terms.

The position for the risky asset is updated.

The position for the risk-free asset is updated.

The results are added to the DataFrame.

The reward is set to the profit or loss.

The portfolio value is updated.

Next, consider the following parametrization for the environment, including a fixed
seed value for the random number generator. Figure 8-2 shows the evolution of the
values of the two assets. Here, the initial value is set to 1 for both assets:

In [12]: S0 = 1.

In [13]: investing = Investing(S0=S0, T=1.0, r_=[0.05], mu_=[0.3],
                       sigma_=[0.35], steps=252, amount=1)

In [14]: investing.seed(750)

In [15]: investing._generate_data()

In [16]: investing.data.plot(style=['g--', 'b:'], lw=1.0)
         plt.xlabel('time step')
         plt.ylabel('price');
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Figure 8-2. Value paths for the risk-free and risky asset

The following Python code lets a random agent interact with the environment.
Figure 8-3 shows the performance of the portfolio value relative to the value paths of
the risk-free and the risky asset. Given the random allocation of the agent and the
negative overall performance of the risky asset, the random strategy outperforms
both the risk-free and the risky asset in the case shown in the figure:

In [17]: investing.reset()
Out[17]: (array([1., 1., 0., 0.]), {})

In [18]: for _ in range(investing.steps - 1):
             investing.step(investing.action_space.sample())

In [19]: investing.portfolios.head().round(3)
Out[19]:    e    xt    yt    pv  pv_new  p&l[$]  p&l[%]    Xt    Yt  Xt_new \
         0  1 0.587 0.413 1.000   1.000   0.000   0.000 1.000 1.000   0.979
         1  1 0.001 0.999 1.000   1.009   0.009   0.008 0.979 1.000   0.994
         2  1 0.838 0.162 1.009   1.009   0.000   0.000 0.994 1.000   0.973
         3  1 0.981 0.019 1.009   0.998  -0.011  -0.011 0.973 1.001   0.961
         4  1 0.167 0.833 0.998   0.978  -0.020  -0.020 0.961 1.001   0.941

           Yt_new     r    mu  sigma
         0  1.000 0.050 0.300  0.350
         1  1.000 0.050 0.300  0.350
         2  1.001 0.050 0.300  0.350
         3  1.001 0.050 0.300  0.350
         4  1.001 0.050 0.300  0.350
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In [20]: investing.portfolios[['Xt', 'Yt', 'pv']].plot(
             title='PORTFOLIO VALUE | RANDOM AGENT',
             style=['g--', 'b:', 'r-'], lw=1)
         plt.xlabel('time step')
         plt.ylabel('value');

Figure 8-3. Portfolio values for the random agent

As in the previous chapter, the InvestingAgent class inherits from the DQLAgent
class as presented in “DQLAgent Class” on page 100. The neural network takes as
input the four values that represent the state of the environment and the asset alloca‐
tion—the value of the risky asset, the value of the risk-free asset, the position in the
risky asset, and the position in the risk-free asset. It gives as output a single floating-
point value. The output represents the expected reward given the state of the envi‐
ronment and the asset allocation:

In [21]: from dqlagent import *

In [22]: opt = keras.optimizers.legacy.Adam

In [23]: class InvestingAgent(DQLAgent):
             def _create_model(self, hu, lr):
                 self.model = Sequential()
                 self.model.add(Dense(hu, input_dim=self.n_features,
                                 activation='relu'))
                 self.model.add(Dense(hu, activation='relu'))
                 self.model.add(Dense(1, activation='linear'))  
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                 self.model.compile(loss='mse',
                         optimizer=opt(learning_rate=lr))

Linear floating-point valued output

As in the dynamic hedging case, the optimal action is derived through numerical
optimization. The .opt_action() method gives the allocation for the risky asset that
yields the maximal expected reward. The allocation for the risk-free asset follows by
definition:

In [24]: from scipy.optimize import minimize

In [25]: class InvestingAgent(InvestingAgent):
             def opt_action(self, state):
                 bnds = [(0, 1)]  
                 def f(state, x):  
                     s = state.copy()
                     s[0, self.xp] = x  
                     s[0, self.yp] = 1 - x  
                     return self.model.predict(s)[0, 0]  
                 action = minimize(lambda x: -f(state, x), 0.5,
                                 bounds=bnds, method='Nelder-Mead',
                                 )['x'][0]  
                 return action

             def act(self, state):
                 if random.random() <= self.epsilon:
                     return self.env.action_space.sample()
                 action = self.opt_action(state)  
                 return action

The bounds for the allocation to the risky asset

The function f() to be maximized

Sets the risky asset allocation to the input value x

Sets the risk-free asset allocation to 1 – x

Predicts the expected reward from the neural network

Maximizes the expected reward by minimizing –f()

Calls the .opt_action() method.
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Similarly, the .replay() method predicts the expected future reward based on the
allocation to the risky asset:

In [26]: class InvestingAgent(InvestingAgent):
             def replay(self):
                 batch = random.sample(self.memory, self.batch_size)
                 for state, action, next_state, reward, done in batch:
                     ns = next_state.copy()
                     target = reward
                     if not done:
                         action = self.opt_action(ns)  
                         ns[0, self.xp] = action  
                         ns[0, self.yp] = 1 - action  
                         target += (self.gamma *
                             self.model.predict(ns)[0, 0])  
                     self.model.fit(state, np.array([target]),
                                    epochs=1, verbose=False)
                 if self.epsilon > self.epsilon_min:
                     self.epsilon *= self.epsilon_decay

Generates the optimal action as the allocation to the risky asset.

Updates the allocation to the risky asset.

Updates the allocation to the risk-free asset.

Calculates and adds the discounted, delayed reward.

Finally, the following Python code adjusts the .testing() methods to reflect the new
setup. The major change is the call of the .opt_action() method to retrieve optimal
asset allocations for the risky asset:

In [27]: class InvestingAgent(InvestingAgent):
             def test(self, episodes, verbose=True):
                 for e in range(1, episodes + 1):
                     state, _ = self.env.reset()
                     state = self._reshape(state)
                     treward = 0
                     for _ in range(1, len(self.env.data) + 1):
                         action = self.opt_action(state)
                         state, reward, done, trunc, _ = self.env.step(action)
                         state = self._reshape(state)
                         treward += reward
                         if done:
                             templ = f'episode={e} | '
                             templ += f'total reward={treward:4.2f}'
                             if verbose:
                                 print(templ, end='\r')
                             break
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Consider now the Investing environment initialized with several values for the short
rate, the expected return (drift), and the volatility of the risky asset. The Investing
Agent is trained on a larger number of simulations for randomly chosen parameter
combinations:

In [28]: def set_seeds(seed=500):
             random.seed(seed)
             np.random.seed(seed)
             tf.random.set_seed(seed)

In [29]: set_seeds()

In [30]: investing = Investing(S0=S0, T=1.0, r_=[0, 0.025, 0.05],
                       mu_=[0.05, 0.1, 0.15],
                       sigma_=[0.1, 0.2, 0.3], steps=252, amount=1)

In [31]: agent = InvestingAgent('2FS', feature=None, n_features=4,
                              env=investing, hu=128, lr=0.00025)

In [32]: agent.xp = 2  
         agent.yp = 3  

In [33]: episodes = 64

In [34]: %time agent.learn(episodes)
         episode=  64 | treward=  0.272 | max=  0.326
         CPU times: user 29.9 s, sys: 4.6 s, total: 34.5 s
         Wall time: 29.5 s

In [35]: agent.epsilon
Out[35]: 0.8519730927255319

Sets the index position for the risky asset

Sets the index position for the risk-free asset

Then, the agent is tested for several test runs. For a single test run, Figure 8-4 shows
the evolution of the portfolio value, given the asset allocation as chosen by the agent:

In [36]: agent.env.portfolios = pd.DataFrame()

In [37]: %time agent.test(10)
         CPU times: user 20.3 s, sys: 3.13 s, total: 23.4 s
         Wall time: 19.9 s

In [38]: n = max(agent.env.portfolios['e'])  

In [39]: res = agent.env.portfolios[agent.env.portfolios['e'] == n]
         res.head()

Out[39]:        e    xt    yt    pv  pv_new  p&l[$]  p&l[%]    Xt    Yt  Xt_new
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         2268  74 0.564 0.436 1.000   1.000   0.000   0.000 1.000 1.000   1.002
         2269  74 0.565 0.435 1.000   0.999  -0.001  -0.001 1.002 1.000   1.001
         2270  74 0.564 0.436 0.999   1.007   0.008   0.007 1.001 1.000   1.014
         2271  74 0.570 0.430 1.007   1.010   0.003   0.003 1.014 1.001   1.019
         2272  74 0.572 0.428 1.010   1.016   0.006   0.006 1.019 1.001   1.029

               Yt_new     r    mu  sigma
         2268   1.000 0.050 0.150  0.100
         2269   1.000 0.050 0.150  0.100
         2270   1.001 0.050 0.150  0.100
         2271   1.001 0.050 0.150  0.100
         2272   1.001 0.050 0.150  0.100

In [40]: p = res.iloc[0][['r', 'mu', 'sigma']]

In [41]: t = f"r={p['r']} | mu={p['mu']} | sigma={p['sigma']}"

In [42]: res[['Xt', 'Yt', 'pv']].plot(
             title='PORTFOLIO VALUE | ' + t,
             style=['g--', 'b:', 'r-'], lw=1)
         plt.xlabel('time step')
         plt.ylabel('value');

Chooses the final test run

Figure 8-4. Portfolio values for the InvestingAgent

It is interesting to investigate some statistics in this context. In this particular test run,
the 60/40 strategy is almost exactly dynamically implemented by the agent (see
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1 Given the zero risk of the risk-free asset, its Sharpe ratio is not defined (infinite). For that reason, the Sharpe
ratio cannot be used as a reward. The agent would learn to primarily (exclusively) invest in the risk-free asset
to ensure large (infinite) rewards.

Figure 8-5). While the return of the agent’s strategy is between the returns of the risk-
free and the risky asset, the resulting Sharpe ratio of the agent’s 60/40 strategy is
higher than the one of the risky asset:1

In [43]: rets = res[['Xt', 'Yt', 'pv']].pct_change(
             ).mean() / agent.env.dt  
         rets
Out[43]: Xt   0.110
         Yt   0.050
         pv   0.081
         dtype: float64

In [44]: stds = res[['Xt', 'Yt', 'pv']].pct_change(
             ).std() / math.sqrt(agent.env.dt)  
         stds
Out[44]: Xt   0.102
         Yt   0.000
         pv   0.060
         dtype: float64

In [45]: rets[['Xt', 'pv']] / stds[['Xt', 'pv']]  
Out[45]: Xt   1.079
         pv   1.365
         dtype: float64

In [46]: res['xt'].mean()  
Out[46]: 0.5845191592261907

In [47]: res['xt'].std()  
Out[47]: 0.010688881672664631

In [48]: res['xt'].plot(title='RISKY ALLOCATION | ' + t,
                        lw=1.0, c='b')
         plt.ylim(res['xt'].min() - 0.1, res['xt'].max() + 0.1)
         plt.xlabel('time step');

Calculates the annualized mean returns

Calculates the annualized volatilities

Derives the Sharpe ratios

Average risky asset allocation

Standard deviation of that allocation
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Figure 8-5. Dynamic allocation to the risky asset (in percent)

The following shows several statistics related to the allocation to the risky asset (xt).
Basically, independent of the drift and risk parameters, the risky allocation is around
55% on average, with a maximum value of around 66%:

In [49]: agent.env.portfolios.groupby('mu')['xt'].describe()
Out[49]:          count  mean   std   min   25%   50%   75%   max
         mu
         0.050  504.000 0.561 0.040 0.392 0.558 0.565 0.577 0.633
         0.100 1008.000 0.547 0.088 0.394 0.419 0.583 0.615 0.661
         0.150 1008.000 0.561 0.054 0.390 0.555 0.572 0.588 0.635

In [50]: agent.env.portfolios.groupby('sigma')['xt'].describe()
Out[50]:          count  mean   std   min   25%   50%   75%   max
         sigma
         0.100 1260.000 0.593 0.026 0.550 0.574 0.588 0.614 0.659
         0.200  756.000 0.540 0.060 0.390 0.547 0.559 0.570 0.633
         0.300  504.000 0.484 0.083 0.394 0.406 0.419 0.557 0.661
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Similarly, the following data provides the same statistics for the portfolio values over
time. Apart from the case with the highest risk factor, the portfolios are above 1 on
average. Overall, one can say that they do not vary that much on average for the dif‐
ferent parameter values:

In [51]: agent.env.portfolios.groupby('mu')['pv_new'].describe()
Out[51]:          count  mean   std   min   25%   50%   75%   max
         mu
         0.050  504.000 1.016 0.033 0.948 0.994 1.010 1.036 1.114
         0.100 1008.000 1.013 0.087 0.846 0.929 1.025 1.078 1.196
         0.150 1008.000 1.022 0.037 0.926 0.997 1.018 1.055 1.099

In [52]: agent.env.portfolios.groupby('sigma')['pv_new'].describe()
Out[52]:          count  mean   std   min   25%   50%   75%   max
         sigma
         0.100 1260.000 1.054 0.044 0.986 1.019 1.046 1.076 1.196
         0.200  756.000 1.003 0.034 0.926 0.980 0.999 1.021 1.114
         0.300  504.000 0.947 0.061 0.846 0.904 0.929 0.980 1.138

To close this section, another analysis of the test run sheds more light on how the
agent behaves. The agent increases the exposure to the risky asset in cases when the
price of the asset rises. It does the opposite in cases when the price falls. However, the
risky allocation remains between 55% and about 60% throughout. One could call
such a strategy a positive feedback strategy (see Figure 8-6). The agent achieves a per‐
formance well above the risk-free return and below the return of the risky asset:

In [53]: n = max(agent.env.portfolios['e'])  

In [54]: res = agent.env.portfolios[agent.env.portfolios['e'] == n]

In [55]: p = res.iloc[0][['r', 'mu', 'sigma']]

In [56]: t = f"r={p['r']} | mu={p['mu']} | sigma={p['sigma']}"

In [57]: ax = res[['Xt', 'Yt', 'pv', 'xt']].plot(
             title='PORTFOLIO VALUE | ' + t,
             style=['g--', 'b:', 'r-', 'm-.'], lw=1,
             secondary_y='xt'
         )

Selects the test run
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2 For more details and example calculations based on Python code, see Hilpisch (2017, Chapter 4). The exam‐
ples in that book use the EURO STOXX stock index instead of the S&P 500 and the VSTOXX volatility index
instead of the VIX.

Figure 8-6. Portfolio values and dynamic allocation to the risky asset

Two-Asset Case
The analysis of the previous section can easily be adjusted to include two risky assets.
This section is based on real historical data for a number of different financial instru‐
ments. The analysis focuses on data from the S&P 500 stock index and the VIX vola‐
tility index. The time series of the index levels are known to be highly negatively
correlated. Investment strategies that keep the fractions of the two constant over time
are known to yield superior returns relative to other investment strategies involving
these two assets. Such strategies are called constant proportion investment strategies.
Such strategies use dynamic portfolio rebalancing to keep the proportions invested in
each security at roughly the same level, say 60% in the S&P 500 and 40% in the VIX.2
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Strategy Implementation

This section makes the simplifying assumption that both the S&P
500 and the VIX are tradable assets. In practice, this is not the case;
other financial instruments that rely on such indices are needed.
For example, one can use an exchange-traded fund based on the
S&P 500 as a proxy for the stock index. Futures or options on the
index could also be used. Similarly, one can use futures and options
written on the VIX as proxies for the volatility index. When using
futures and options, this involves a number of implementation-
related topics—such as rollovers of the derivatives positions—that
are ignored in this section. Other simplifying assumptions, such as
zero transaction costs, are also made implicitly.

Although there are a number of adjustments to be made to the Investing environ‐
ment from the previous section, they are all straightforward and should be easy to
understand. The new Investing class allows for the selection of two risky assets. For
these, a random, contiguous subset is selected from the original data set. The data set
itself is the same as the one used in Chapter 3 for the Finance environment class:

In [58]: class Investing(Investing):
             def __init__(self, asset_one='.SPX', asset_two='.VIX',
                          steps=252, amount=1):
                 self.asset_one = asset_one
                 self.asset_two = asset_two
                 self.steps = steps
                 self.initial_balance = amount
                 self.portfolio_value = amount
                 self.portfolio_value_new = amount
                 self.observation_space = observation_space(5)
                 self.osn = self.observation_space.shape[0]
                 self.action_space = action_space(1)
                 self.retrieved = False
                 self._generate_data()
                 self.portfolios = pd.DataFrame()
                 self.episode = 0

             def _generate_data(self):
                 if self.retrieved:
                     pass
                 else:
                     url = 'https://certificate.tpq.io/rl4finance.csv'  
                     self.raw = pd.read_csv(url, index_col=0,
                                            parse_dates=True).dropna()  
                     self.retrieved = True
                 self.data = pd.DataFrame()
                 self.data['Xt'] = self.raw[self.asset_one]
                 self.data['Yt'] = self.raw[self.asset_two]
                 s = random.randint(self.steps, len(self.data))  
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                 self.data = self.data.iloc[s-self.steps:s]  
                 self.data = self.data / self.data.iloc[0]  

Retrieves the historical end-of-day price data

Draws a random integer for the selection of a subset of the data

Selects the random subset from the original data

Normalizes the data to 1 as the initial value

The following two methods mainly reflect the required changes to account for the
date of a given state:

In [59]: class Investing(Investing):
             def _get_state(self):
                 Xt = self.data['Xt'].iloc[self.bar]
                 Yt = self.data['Yt'].iloc[self.bar]
                 self.date = self.data.index[self.bar]  
                 return np.array([Xt, Yt, Xt - Yt, self.xt, self.yt]), {}  

             def add_results(self, pl):
                 df = pd.DataFrame({
                        'e': self.episode, 'date': self.date,  
                        'xt': self.xt, 'yt': self.yt,
                        'pv': self.portfolio_value,
                        'pv_new': self.portfolio_value_new, 'p&l[$]': pl,
                        'p&l[%]': pl / self.portfolio_value_new * 100,
                        'Xt': self.state[0],  'Yt': self.state[1],
                        'Xt_new': self.new_state[0],
                        'Yt_new': self.new_state[1],
                               }, index=[0])
                 self.portfolios = pd.concat((self.portfolios, df),
                                             ignore_index=True)

Stores the date of a state in an instance attribute

Adds the difference in asset prices to the set of state variables

Saves the date of the state in the DataFrame object

One major change concerns the reward that the agent receives. Instead of returning
the absolute P&L, the new Investing environment provides a reward based on the
Sharpe ratio. The Sharpe ratio is calculated as the realized, annualized return divided
by the annualized rolling volatility over a fixed window length. Without further
tweaks, the agent would come up with investment strategies that are highly volatile
with regard to the allocations to the two risky assets. This is not desirable in general
because it leads, among other things, to high transaction costs in practice. Therefore,
a penalty is subtracted from the realized Sharpe ratio for deviations from the previous
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3 In a more general setting, a penalty could also result from transaction costs, market impact, or other market
microstructure elements.

allocations.3 This incentivizes the agent to prefer smaller changes in the allocations.
This also introduces a form of regularization to the asset allocation process:

In [60]: class Investing(Investing):
             def step(self, action):
                 self.bar += 1
                 self.new_state, info = self._get_state()
                 if self.bar == 1:
                     self.xt = action
                     self.yt = (1 - action)
                     pl = 0.
                     reward = 0.
                     self.add_results(pl)
                 else:
                     self.portfolio_value_new = (
                         self.xt * self.portfolio_value *
                         self.new_state[0] / self.state[0] +
                         self.yt * self.portfolio_value *
                         self.new_state[1] / self.state[1])
                     pl = self.portfolio_value_new - self.portfolio_value
                     pen = (self.xt - action) ** 2  
                     self.xt = action
                     self.yt = (1 - action)
                     self.add_results(pl)
                     ret = self.portfolios['p&l[%]'].iloc[-1] / 100 * 252  
                     vol = self.portfolios['p&l[%]'].rolling(
                         20, min_periods=1).std().iloc[-1] * math.sqrt(252)  
                     sharpe = ret / vol 
                     reward = sharpe - pen  
                     self.portfolio_value = self.portfolio_value_new
                 if self.bar == len(self.data) - 1:
                     done = True
                 else:
                     done = False
                 self.state = self.new_state
                 return self.state, reward, done, False, {}

The penalty as the squared difference between the previous and the new alloca‐
tion to the first risky asset

The realized, annualized P&L from the previous state to the new one

The rolling, annualized volatility over a fixed time window up to the new state

The Sharpe ratio as realized from the previous state to the new one
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The reward as the difference between the Sharpe ratio and the penalty

The following Python code instantiates an environment object and plots the ran‐
domly selected, normalized subset for the S&P 500 and VIX indices. Figure 8-7 nicely
illustrates the high negative correlation between the two time series:

In [61]: days = 2 * 252

In [62]: investing = Investing(steps=days)

In [63]: investing.data.head()
Out[63]:               Xt    Yt
         Date
         2018-05-10 1.000 1.000
         2018-05-11 1.002 0.956
         2018-05-14 1.003 0.977
         2018-05-15 0.996 1.106
         2018-05-16 1.000 1.014

In [64]: investing.data.corr()  
Out[64]:        Xt     Yt
         Xt  1.000 -0.457
         Yt -0.457  1.000

In [65]: investing.data.plot(secondary_y='Yt',
                             style=['b', 'g--'], lw=1);

Calculates the correlation between the two time series

Figure 8-7. Normalized index levels for S&P 500 and VIX
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No adjustments need to be made to the InvestingAgent class. The following code
trains the agent based on the new Investing environment:

In [66]: set_seeds()

In [67]: investing = Investing(steps=days)

In [68]: agent = InvestingAgent('2AC', feature=None, n_features=5,
                              env=investing, hu=48, lr=0.0005)

In [69]: agent.xp = 3  
         agent.yp = 4  

In [70]: episodes = 250

In [71]: %time agent.learn(episodes)
         episode= 250 | treward=-42.749 | max=-38.6463
         CPU times: user 8min 36s, sys: 1min 46s, total: 10min 22s
         Wall time: 9min 27s

In [72]: agent.epsilon
Out[72]: 0.5348427211156283

Sets the index position for the first risky asset

Sets the index position for the second risky asset

The following Python code conducts several test runs. It also provides high-level sta‐
tistics for the allocation to the first risky asset:

In [73]: agent.env.portfolios = pd.DataFrame()

In [74]: %time agent.test(10)
         CPU times: user 42.8 s, sys: 5.84 s, total: 48.7 s
         Wall time: 42 s

In [75]: agent.env.portfolios['xt'].describe()
Out[75]: count   5030.000
         mean       0.433
         std        0.084
         min        0.000
         25%        0.389
         50%        0.428
         75%        0.498
         max        0.676
         Name: xt, dtype: float64

A deeper analysis of a specific test case sheds more light on the investment strategy of
the agent. In the specific case chosen, the strategy keeps the allocations over the
investment horizon relatively constant on average, as is illustrated in Figure 8-8.
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However, there are also larger rebalancings, depending on the relative performance
of the two risky assets:

In [76]: n = max(agent.env.portfolios['e']) - 3

In [77]: res = agent.env.portfolios[
                 agent.env.portfolios['e'] == n].set_index('date')

In [78]: res['xt'].plot(lw=1, c='b')
         plt.ylim(res['xt'].min() - 0.1, res['xt'].max() + 0.1)
         plt.ylabel('allocation (asset 1)');

Figure 8-8. Allocation to the first risky asset

In the specific case chosen, the agent’s strategy not only outperforms both risky assets
by a large margin, but it also achieves the highest Sharpe ratio. Figure 8-9 illustrates
the performance of the agent’s strategy compared with the two risky assets:

In [79]: res[['Xt', 'Yt', 'pv']].iloc[-1]
Out[79]: Xt   1.065
         Yt   0.983
         pv   2.022
         Name: 2016-11-18 00:00:00, dtype: float64

In [80]: r = np.log(res[['Xt', 'Yt', 'pv']] /
                    res[['Xt', 'Yt', 'pv']].shift(1))

In [81]: rets = np.exp(r.mean() * 252) - 1
         rets
Out[81]: Xt    0.032
         Yt   -0.009
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         pv    0.424
         dtype: float64

In [82]: stds = r.std() * math.sqrt(252)
         stds
Out[82]: Xt   0.146
         Yt   1.338
         pv   0.670
         dtype: float64

In [83]: rets / stds
Out[83]: Xt    0.221
         Yt   -0.006
         pv    0.633
         dtype: float64

In [84]: res[['Xt', 'Yt', 'pv']].plot(
             title='PORTFOLIO VALUE',
             style=['g--', 'b:', 'r-'],
             lw=1, grid=True)
         plt.ylabel('value');

Figure 8-9. Asset prices and portfolio value over time

For all test runs, the agent’s strategy outperforms both assets over the investment
horizon:

In [85]: values = agent.env.portfolios.groupby('e')[
                 ['Xt', 'Yt', 'pv_new']].last()
         values.tail()
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Out[85]:        Xt    Yt  pv_new
         e
         256 1.285 1.067   1.998
         257 1.065 0.983   1.971
         258 1.301 1.138   2.558
         259 1.196 1.103   2.175
         260 1.389 1.373   2.672

In [86]: values.mean()
Out[86]: Xt       1.233
         Yt       1.077
         pv_new   2.187
         dtype: float64

In [87]: ((values['pv_new'] > values['Xt']) &
          (values['pv_new'] > values['Yt'])).value_counts()
Out[87]: True    10
         Name: count, dtype: int64

Three-Asset Case
This section addresses an investment case with three risky assets. It is a case that is
already analyzed by Markowitz (1952) in a static setting, that is, with two points in
time only. As before, the setup in this section is a dynamic one based on historical
data from which a random, contiguous sample is selected for each episode during
training and testing.

The code for this section is presented in the form of a Python script in “Three-Asset
Code” on page 162. In a sense, the code presents a summary of the code of the
previous two sections. It also includes the necessary adjustments, of course, to reflect
the additional asset. Based on this code, a further generalization to n > 3 assets is not
too difficult.

Given the Python code in “Three-Asset Code” on page 162, the setup is efficient. One
just needs to execute the script:

In [1]: %run assetallocation.py

For the instantiation of the Investing environment, three symbols are required.
Figure 8-10 shows a randomly chosen subset of the time series data for the symbols:

In [2]: days = 2 * 252

In [3]: random.seed(100)

In [4]: # 1 = X, 2 = Y, 3 = Z
        investing = Investing('.SPX', '.VIX', 'XAU=', steps=days)

In [5]: investing.data.plot(lw=1, style=['g--', 'b:', 'm-.'])
        plt.ylabel('price');
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Figure 8-10. Random, contiguous price samples for the three risky assets

The following Python code implements the training phase for the InvestingAgent:

In [6]: random.seed(100)
        np.random.seed(100)
        tf.random.set_seed(100)

In [7]: agent = InvestingAgent('3AC', feature=None, n_features=6,
                             env=investing, hu=128, lr=0.00025)

In [8]: episodes = 64

In [9]: %time agent.learn(episodes)
        episode=  64 | treward=  2.201 | max=  7.745
        CPU times: user 1min 7s, sys: 9.85 s, total: 1min 17s
        Wall time: 1min 19s

In [10]: agent.epsilon
Out[10]: 0.8519730927255319

For the test runs, the InvestingAgent achieves an average final portfolio value that
lies well above the final value of any of the three risky assets. This is achieved by allo‐
cating the largest portion on average to the first asset and the lowest portion on aver‐
age to the third asset:

In [11]: agent.env.portfolios = pd.DataFrame()

In [12]: %time agent.test(10)
         episode=10 | total reward=8.24
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         CPU times: user 52.9 s, sys: 7.34 s, total: 1min
         Wall time: 53.1 s

In [13]: agent.env.portfolios.groupby('e')[
             ['xt', 'yt', 'zt']].mean().mean()
Out[13]: xt    0.572418
         yt    0.341007
         zt    0.086576
         dtype: float64

In [14]: agent.env.portfolios.groupby('e')[
             ['Xt', 'Yt', 'Zt', 'pv']].last().mean()
Out[14]: Xt    1.184271
         Yt    1.303997
         Zt    1.219622
         pv    2.927294
         dtype: float64

The method for deriving the optimal action of the InvestingAgent class includes a
penalty term for derivations from the previous portfolio position. This avoids rela‐
tively large dynamic position adjustments as Figure 8-11 visualizes for a specific test
run. However, while the agent starts with an almost equally weighted portfolio, it
quickly adjusts the allocations depending on the evolution of the asset prices:

In [15]: def get_r(n):
             r = agent.env.portfolios[
                 agent.env.portfolios['e'] == n
                 ].set_index('date')
             return r

In [16]: n = min(agent.env.portfolios['e']) + 1
         n
Out[16]: 66

In [17]: r = get_r(n)

In [18]: r[['xt', 'yt', 'zt']].mean()
Out[18]: xt    0.518429
         yt    0.375992
         zt    0.105579
         dtype: float64

In [19]: r[['xt', 'yt', 'zt']].std()
Out[19]: xt    0.089908
         yt    0.127021
         zt    0.147788
         dtype: float64

In [20]: r[['xt', 'yt', 'zt']].plot(
             title='ALLOCATIONS [%]',
             style=['g--', 'b:', 'm-.'],
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             lw=1, grid=True)
         plt.ylabel('allocation');

Figure 8-11. Dynamic allocation to the three risky assets

For that test run, Figure 8-12 shows the performance over time of the agent’s portfo‐
lio compared to the three risky assets. In this case, the agent’s dynamic investment
strategy not only achieves the highest return, but it also achieves the highest Sharpe
ratio by a large margin:

In [21]: cols = ['Xt', 'Yt', 'Zt', 'pv']

In [22]: sub = r[cols]

In [23]: rets = sub.iloc[-1] / sub.iloc[0] - 1
         rets
Out[23]: Xt    0.504887
         Yt    0.052514
         Zt    0.484728
         pv    2.670451
         dtype: float64

In [24]: stds = sub.pct_change().std() * math.sqrt(252)
         stds
Out[24]: Xt    0.261492
         Yt    1.475499
         Zt    0.167226
         pv    0.529418
         dtype: float64

Three-Asset Case | 157



In [25]: rets / stds
Out[25]: Xt    1.930792
         Yt    0.035591
         Zt    2.898632
         pv    5.044123
         dtype: float64

In [26]: sub.plot(style=['g--', 'b:', 'm-.', 'r-'], lw=1)
         plt.ylabel('value');

Figure 8-12. Performance of the agent’s portfolio in comparison

The reward that the agent receives is based on the Sharpe ratio that it realizes step-
by-step. This rewards a higher return and penalizes higher risk. Therefore, it is also
interesting to look at the realized Sharpe ratios during all the test runs in comparison
to the three risky assets. The numbers speak for themselves: the agent’s allocations
achieve, on average, a much higher Sharpe ratio than each individual asset:

In [27]: sharpe = pd.DataFrame()

In [28]: def calculate_sr():
             for n in set(investing.portfolios['e']):
                 r = get_r(n)
                 sub = r[cols]
                 rets = sub.iloc[-1] / sub.iloc[0] - 1
                 stds = sub.pct_change().std() * math.sqrt(252)
                 sharpe[n] = rets / stds

In [29]: calculate_sr()
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In [30]: sharpe.round(2)
Out[30]:       65    66    67    68    69    70    71    72    73    74
         Xt  1.69  1.93 -0.01  0.41  0.16  1.34  0.30  1.31  1.52  0.53
         Yt  0.29  0.04 -0.13 -0.05 -0.14  0.31  0.76 -0.11  0.21  0.80
         Zt  2.78  2.90  0.86 -0.21  0.51  0.71  2.13  1.12  1.19  3.24
         pv  6.55  5.04  2.08  1.11  2.32  3.67  7.09  2.80  3.76  7.84

In [31]: sharpe.mean(axis=1)
Out[31]: Xt    0.917560
         Yt    0.197753
         Zt    1.523657
         pv    4.225037
         dtype: float64

The observed outperformance on average also translates into outperformances for
every single test run. The agent achieves for every test run a higher Sharpe ratio than
any of the three risky assets:

In [32]: ((sharpe.loc['pv'] > sharpe.loc['Xt']) &
          (sharpe.loc['pv'] > sharpe.loc['Yt']) &
          (sharpe.loc['pv'] > sharpe.loc['Zt'])).value_counts()
Out[32]: True    10
         Name: count, dtype: int64

Simplistic Modeling

The approaches and implementations in this chapter are admit‐
tedly pretty simplistic. For example, the state of the environment
contains only the current prices of the assets to be invested in, per‐
haps their price differences, and their current allocations. In that
sense, a Markov process for the evolution of the risky assets’ prices
is assumed—only the current price is relevant for the future evolu‐
tion and not the price history.
As another example, two or three assets are also too few for real-
world applications in general. However, the investment cases pre‐
sented are canonical and important examples in the financial
literature about portfolio theory.
Furthermore, the analysis in this chapter assumes zero transaction
costs. As several of the figures in this chapter illustrate, the
dynamic reallocations of the agent are happening basically every
trading day, which would lead to pretty high transaction costs. This
type of assumption is, however, in line with the analysis in
Chapter 7.
All of this can, of course, be adjusted, enriched, and enhanced in a
relatively straightforward manner.

Three-Asset Case | 159



Equally Weighted Portfolio
It is well known that an equally weighted portfolio is a hard benchmark to beat for
most active and dynamic asset allocation approaches. This holds true in the case of
the previous section as well. The following Python code replaces the .opt_action()
method with a simple one that only returns the equal weights vector ( 1

3 , 1
3 , 1

3 ). The
results with regard to the Sharpe ratio are remarkably good on average when com‐
pared with the individual assets. For the ten test runs, the equally weighted portfolio
beats the best risky asset six times. The simplest type of diversification seems to
indeed have good characteristics without leveraging any type of information or
analysis:

In [33]: agent.opt_action = lambda state: np.ones(3) / 3

In [34]: agent.env.portfolios = pd.DataFrame()

In [35]: %time agent.test(10)
         episode=10 | total reward=4.75
         CPU times: user 1.98 s, sys: 47.7 ms, total: 2.03 s
         Wall time: 3.53 s

In [36]: sharpe = pd.DataFrame()

In [37]: calculate_sr()

In [38]: sharpe.round(2)
Out[38]:       75    76    77    78    79    80    81    82    83    84
         Xt  1.35  0.41  2.73  1.10  0.38  3.46  1.35  0.81  0.61  1.84
         Yt  0.06  0.20 -0.08  0.62 -0.02 -0.18  0.06 -0.05  0.75 -0.16
         Zt  1.23 -0.44  0.37  1.52 -0.16 -0.87  1.23 -0.72  4.86  1.30
         pv  1.67  1.52  1.32  2.52  1.25  0.96  1.67  1.27  3.77  1.76

In [39]: sharpe.mean(axis=1)
Out[39]: Xt    1.402960
         Yt    0.121449
         Zt    0.830933
         pv    1.769955
         dtype: float64

In [40]: ((sharpe.loc['pv'] > sharpe.loc['Xt']) &
          (sharpe.loc['pv'] > sharpe.loc['Yt']) &
          (sharpe.loc['pv'] > sharpe.loc['Zt'])).value_counts()
Out[40]: True     6
         False    4
         Name: count, dtype: int64
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Conclusions
Dynamic asset allocation is another financial problem that can be attacked with
methods from reinforcement learning (RL) and DQL. This chapter covers three dif‐
ferent, canonical use cases:

• One risky and one risk-free asset
• Two risky assets
• Three risky assets

A popular investment strategy is the 60/40 investment portfolio that puts 60% in
risky assets, such as equity indices, and 40% in less risky assets, such as government
or corporate bonds. The examples in “Two-Fund Separation” on page 130 almost
exactly recover this type of strategy in that the risky allocation of the InvestingAgent
often hovers close to 60%.

“Two-Asset Case” on page 146 replaces the risk-free asset with another risky asset.
The assets chosen, the S&P 500 stock index and the VIX, are known to be highly neg‐
atively correlated. This in general implies that diversification pays off handsomely.
The results of the agent’s dynamic asset allocation strategy are in general a higher
absolute return and a higher Sharpe ratio when compared to the individual assets.

The three-asset case presented in “Three-Asset Case” on page 154 is a generalization
of the two-asset case. This investment case, in its static form, was analyzed in the
seminal paper on modern portfolio theory by Markowitz (1952). The dynamic strate‐
gies of the agent outperforms any of the three individual assets in terms of the Sharpe
ratio in 10 out of the 10 test runs implemented.

References
• Black, Fischer, and Myron Scholes. “The Pricing of Options and Corporate Lia‐

bilities.” Journal of Political Economy 81, no. 3 (May–June, 1973): 637–654.
• Chisholm, Denise. “Three Key Catalysts for the 60/40 Strategy”. Commentary,

Fidelity Investments, 2023.
• Copeland, Thomas E., J. Fred Weston, and Kuldeep Shastri. Financial Theory

and Corporate Policy. 4th ed. Reading MA: Pearson Addison Wesley, 2005.
• Economist. “The $100trn Battle for the World’s Wealthiest People.” September 5,

2023.
• Markowitz, Harry. “Portfolio Selection.” Journal of Finance 7, no. 1 (March

1952): 77–91.

References | 161

https://oreil.ly/0oAyA


• Merton, Robert C. “Lifetime Portfolio Selection Under Uncertainty: The
Continuous-Time Case.” The Review of Economics and Statistics 51, no. 3
(August 1969): 247–257.

• Merton, Robert C. “Theory of Rational Option Pricing.” Bell Journal of Econom‐
ics and Management Science 4, no. 1 (Spring 1973): 141–183.

• Poundstone, William. Fortune’s Formula: The Untold Story of the Scientific Bet‐
ting System That Beat the Casinos and Wall Street. New York: Hill and Wang,
2006.

Three-Asset Code
The following Python code provides the two main classes, Investing and Investing
Agent, for the three-asset investment case:

#
# Investing Environment and Agent
# Three Asset Case
#
# (c) Dr. Yves J. Hilpisch
# Reinforcement Learning for Finance
#

import os
import math
import random
import numpy as np
import pandas as pd
from scipy import stats
from pylab import plt, mpl
from scipy.optimize import minimize

from dqlagent import *

plt.style.use('seaborn-v0_8')
mpl.rcParams['figure.dpi'] = 300
mpl.rcParams['savefig.dpi'] = 300
mpl.rcParams['font.family'] = 'serif'
np.set_printoptions(suppress=True)

opt = keras.optimizers.legacy.Adam

os.environ['PYTHONHASHSEED'] = '0'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'

class observation_space:
    def __init__(self, n):
        self.shape = (n,)

162 | Chapter 8: Dynamic Asset Allocation



class action_space:
    def __init__(self, n):
        self.n = n
    def seed(self, seed):
        random.seed(seed)
    def sample(self):
        rn = np.random.random(3)
        return rn / rn.sum()

class Investing:
    def __init__(self, asset_one, asset_two, asset_three,
                 steps=252, amount=1):
        self.asset_one = asset_one
        self.asset_two = asset_two
        self.asset_three = asset_three
        self.steps = steps
        self.initial_balance = amount
        self.portfolio_value = amount
        self.portfolio_value_new = amount
        self.observation_space = observation_space(4)
        self.osn = self.observation_space.shape[0]
        self.action_space = action_space(3)
        self.retrieved = 0
        self._generate_data()
        self.portfolios = pd.DataFrame()
        self.episode = 0

    def _generate_data(self):
        if self.retrieved:
            pass
        else:
            url = 'https://certificate.tpq.io/rl4finance.csv'
            self.raw = pd.read_csv(url, index_col=0, parse_dates=True).dropna()
            self.retrieved
        self.data = pd.DataFrame()
        self.data['X'] = self.raw[self.asset_one]
        self.data['Y'] = self.raw[self.asset_two]
        self.data['Z'] = self.raw[self.asset_three]
        s = random.randint(self.steps, len(self.data))
        self.data = self.data.iloc[s-self.steps:s]
        self.data = self.data / self.data.iloc[0]

    def _get_state(self):
        Xt = self.data['X'].iloc[self.bar]
        Yt = self.data['Y'].iloc[self.bar]
        Zt = self.data['Z'].iloc[self.bar]
        date = self.data.index[self.bar]
        return np.array(
            [Xt, Yt, Zt, self.xt, self.yt, self.zt]
            ), {'date': date}
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    def seed(self, seed=None):
        if seed is not None:
            random.seed(seed)
            
    def reset(self):
        self.xt = 0
        self.yt = 0
        self.zt = 0
        self.bar = 0
        self.treward = 0
        self.portfolio_value = self.initial_balance
        self.portfolio_value_new = self.initial_balance
        self.episode += 1
        self._generate_data()
        self.state, info = self._get_state()
        return self.state, info

    def add_results(self, pl):
        df = pd.DataFrame({
                   'e': self.episode, 'date': self.date, 
                   'xt': self.xt, 'yt': self.yt, 'zt': self.zt,
                   'pv': self.portfolio_value,
                   'pv_new': self.portfolio_value_new, 'p&l[$]': pl,
                   'p&l[%]': pl / self.portfolio_value_new * 100,
                   'Xt': self.state[0], 'Yt': self.state[1],
                   'Zt': self.state[2], 'Xt_new': self.new_state[0],
                   'Yt_new': self.new_state[1],
                   'Zt_new': self.new_state[2],
                          }, index=[0])
        self.portfolios = pd.concat((self.portfolios, df), ignore_index=True)
        
    def step(self, action):
        self.bar += 1
        self.new_state, info = self._get_state()
        self.date = info['date']
        if self.bar == 1:
            self.xt = action[0]
            self.yt = action[1]
            self.zt = action[2]
            pl = 0.
            reward = 0.
            self.add_results(pl)
        else:
            self.portfolio_value_new = (
                self.xt * self.portfolio_value *
                    self.new_state[0] / self.state[0] +
                self.yt * self.portfolio_value *
                    self.new_state[1] / self.state[1] +
                self.zt * self.portfolio_value *
                    self.new_state[2] / self.state[2]
            )
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            pl = self.portfolio_value_new - self.portfolio_value
            self.xt = action[0]
            self.yt = action[1]
            self.zt = action[2]
            self.add_results(pl)
            ret = self.portfolios['p&l[%]'].iloc[-1] / 100 * 252
            vol = self.portfolios['p&l[%]'].rolling(
                20, min_periods=1).std().iloc[-1] * math.sqrt(252)
            sharpe = ret / vol
            reward = sharpe
            self.portfolio_value = self.portfolio_value_new
        if self.bar == len(self.data) - 1:
            done = True
        else:
            done = False
        self.state = self.new_state
        return self.state, reward, done, False, {}
        

class InvestingAgent(DQLAgent):
    def _create_model(self, hu, lr):
        self.model = Sequential()
        self.model.add(Dense(hu, input_dim=self.n_features,
                        activation='relu'))
        self.model.add(Dense(hu, activation='relu'))
        self.model.add(Dense(1, activation='linear'))
        self.model.compile(loss='mse',
                optimizer=opt(learning_rate=lr))
        
    def opt_action(self, state):
        bnds = 3 * [(0, 1)]
        cons = [{'type': 'eq', 'fun': lambda x: x.sum() - 1}]
        def f(state, x):
            s = state.copy()
            s[0, 3] = x[0]
            s[0, 4] = x[1]
            s[0, 5] = x[2]
            pen = np.mean((state[0, 3:] - x) ** 2)
            return self.model.predict(s)[0, 0] - pen
        try:
            state = self._reshape(state)
            self.action = minimize(lambda x: -f(state, x),
                                   3 * [1 / 3],
                                   bounds=bnds,
                                   constraints=cons,
                                   options={
                                       'eps': 1e-4,
                                        },
                                   method='SLSQP'
                                  )['x']
        except:
            print(state)
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        return self.action
        
    def act(self, state):
        if random.random() <= self.epsilon:
            return self.env.action_space.sample()
        action = self.opt_action(state)
        return action

    def replay(self):
        batch = random.sample(self.memory, self.batch_size)
        for state, action, next_state, reward, done in batch:
            target = reward
            if not done:
                ns = next_state.copy()
                action = self.opt_action(ns)
                ns[0, 3:] = action
                target += self.gamma * self.model.predict(ns)[0, 0]
            self.model.fit(state, np.array([target]), epochs=1,
                           verbose=False)
        if self.epsilon > self.epsilon_min:
            self.epsilon *= self.epsilon_decay

    def test(self, episodes, verbose=True):
        for e in range(1, episodes + 1):
            state, _ = self.env.reset()
            state = self._reshape(state)
            treward = 0
            for _ in range(1, len(self.env.data) + 1):
                action = self.opt_action(state)
                state, reward, done, trunc, _ = self.env.step(action)
                state = self._reshape(state)
                treward += reward
                if done:
                    templ = f'episode={e} | '
                    templ += f'total reward={treward:4.2f}'
                    if verbose:
                        print(templ, end='\r')
                    break
        print()
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1 See Hilpisch (2001) for more details on dynamic hedging in imperfectly liquid markets, resulting positive
feedback and volatility effects, and their impact on option prices.

CHAPTER 9

Optimal Execution

Since the 2007–2008 crisis, Quantitative Finance has changed a lot. In addition to the
classical topics of derivatives pricing, portfolio management, and risk management, a
swath of new subfields has emerged, and a new generation of researchers is passionate
about systemic risk, market impact modeling, counterparty risk, high-frequency trad‐
ing, optimal execution, etc.

—Guéant (2016)

Traditional finance theory often assumes that the actions of agents do not have any
impact on markets or prices because they are so small compared to the group of all
market participants. All applications in Part III so far fall into that category: no mat‐
ter what the action of the agent is, the prices of the traded assets are not influenced.

In reality, however, trading relatively small quantities of shares of a stock can have an
impact on the stock’s prices. This is even more the case when large blocks of shares
are traded by large buy-side institutions, such as hedge funds, or large intermediaries,
such as investment banks. The trade-off that traders face in such situations is between
a fast execution that might have a large impact on prices and a slower execution that
has a smaller impact on prices but leads to price risks due to the natural fluctuations
in market prices.

By assumption, this trade-off is not present in Chapters 6–8. The typical assumption
in models like that of Black-Scholes-Merton (1973) discussed in Chapter 7 is one of
perfectly liquid markets or infinitesimally small agents.1 If, in that model, markets
are imperfectly liquid and the dynamically hedging agent has a non-negligible market
share, then the prices of European put and call options are not as derived by
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2 Other negative effects on the price might result from the negative signal that the liquidation of a position by a
large, strategic investor has.

3 Contrary to the original assumption in AC99, the process is assumed to be driftless. This seems justified,
given that only a relatively small number of trading days is usually assumed.

Black-Scholes-Merton but rather higher due to the effects that dynamic hedging has
on the market price of the underlying asset.

This chapter addresses the optimal execution of large block trades over a number of
trading days. Such a task fits well into the general framework of dynamic program‐
ming. The chapter relies on the model by Almgren and Chriss (1999)—or AC99 for
short. The AC99 model is one of the first to account for different types of costs asso‐
ciated with the liquidation of large positions in a stock or multiple stocks. The chap‐
ter proceeds as follows: “The Model” on page 168 describes the model itself and
provides a closed-form solution for the case in which the single traded asset follows a
random walk. “Model Implementation” on page 170 implements the model in Python
and illustrates the impact of different combinations for the main model parameters.
“Execution Environment” on page 176 develops an environment for the sequential
execution of block trades on the basis of the AC99 model. “Execution Agent” on page
181 discusses the execution agent that learns to optimally execute large block trades
in the AC99 model.

The Model
Traditional finance theory assumes that the value of a position in a stock at time t  is
given by the number of shares, X , multiplied by the price of a share at that time, St .
However, in practice, the liquidation of a large position in a stock might be impossi‐
ble due to a lack of market liquidity or might significantly lower prices to attract
more buyers.2 Therefore, the value under liquidation of a large position in a stock
often is significantly lower than X · St .

More realistically, the AC99 model assumes that the liquidation of a large block of
shares is executed over a number of trading days, t = 0,1,2,...,T , with only partial
quantities of x0,x1,...,xT  liquidated per day with ∑t xt = X . In its basic form, the AC99
model assumes that the single stock follows a random walk, dSt = σdZt , where Zt  is a
Brownian motion and S0 is fixed.3

Furthermore, the model assumes three sources of execution costs associated with such
a liquidation. The first is the permanent impact with impact factor γ. It is linear in the
number of shares traded and is defined as follows:

Permanent Impact = γ ∑
t=1

T
xi
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The second source of execution costs is the temporary impact with temporary impact
factor η. With Δt  being the time interval between two trading days, the temporary
impact is given by the following:

Temporary Impact = η ∑
t=1

T ( xt

Δt )2

Δt

The third source of execution costs is the execution risk, where λ is the risk aversion
factor of the executing agent and σ is the volatility factor of the stock:

Execution Risk = λσ 2∑
t=1

T ( X - ∑i=1
t -1 xi

Δt )2

Δt

The total execution costs are given as follows:

TEC = Permanent Impact + Temporary Impact + Execution Risk

= γ ∑
t=1

T
xt + η ∑

t=1

T ( xt

Δt )2

Δt + λσ 2∑
t=1

T ( X - ∑i=1
t -1 xi

Δt )2

Δt

The dynamic optimization problem in the AC99 model therefore becomes:

min
xt ,t∈{0,1,...,T }

TEC

subject to

∑
t=0

T
xt = X

It can be shown, using calculus of variations or dynamic programming, that in the
basic form of the AC99 model, the optimal trading trajectory satisfies the following
differential equation:

d 2x
dt 2 -

λσ 2

η x = 0

It can be further shown that a general solution to this differential equation is given by
the following:

xt = A cosh (κ(T - t)) + B sinh (κ(T - t))

The Model | 169



Here, κ = λσ 2

η  and A,B are constants determined by the boundary conditions.

Applying the boundary conditions x0 = X  and xT = 0, one obtains the following spe‐
cific solution for the optimal quantity xt

* to be liquidated until t :

xt
* =

X sinh (κ(T - t))
sinh (κT )

For more details on the AC99 model and enhancements of it, refer to Almgren and
Chriss (1999), Almgren and Chriss (2000), and Guéant (2016).

From a practical standpoint, the estimation of the main model parameters is obvi‐
ously of paramount importance. The following empirical methods can be used for the
estimation:

• γ: The permanent market impact parameter can be estimated through a regres‐
sion of stock price changes against the volume of trades that caused the changes.
More specific market microstructure models, such as the one by Kyle (1985) and
its successors, can also be used.

• η: The temporary market impact parameter can be estimated through the analy‐
sis of intraday or high-frequency data to measure the impact of single trades on
the market prices. In addition, order book dynamics can be analyzed to gain
more insights into the role of different order book depths in this context.

• λ: Utility-based analyses can be used to estimate the risk aversion factor. One can
also backtest and calibrate the AC99 model to find a value for λ that brings the
model’s predictions best in line with actual trading data.

In the following section, two different parameter combinations are assumed for the
model. The only parameter that is varied is the risk aversion factor λ because it influ‐
ences the optimal liquidation strategy significantly.

Model Implementation
With the background from “The Model” on page 168, the following implementation
with its variable definitions and naming conventions should be straightforward to
understand. First, we implement the imports:

In [1]: import math
        import random
        import numpy as np
        import pandas as pd
        from pylab import plt, mpl

from pprint import pprint
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In [2]: plt.style.use('seaborn-v0_8')
        mpl.rcParams['figure.dpi'] = 300
        mpl.rcParams['savefig.dpi'] = 300
        mpl.rcParams['font.family'] = 'serif'
        np.set_printoptions(suppress=True)

Second, we implement the initialization:

In [3]: class AlmgrenChriss:
            def __init__(self, T, N, S0, sigma, X, gamma, eta, lamb):
                self.T = T
                self.N = N
                self.dt = T / N
                self.S0 = S0
                self.sigma = sigma
                self.X = X
                self.gamma = gamma
                self.eta = eta
                self.lamb = lamb

Third, we implement the optimal execution policy and trading trajectory. As
Figure 9-1 illustrates, a higher risk aversion leads to an initially faster execution pol‐
icy rather than a lower risk aversion. With high λ, the agent first liquidates larger
quantities from the total position and then reduces the quantity over time. In the case
with low λ, the agent trades almost equal quantities per trading day. In the end, how‐
ever, both strategies completely liquidate the original position:

In [4]: class AlmgrenChriss(AlmgrenChriss):
            def optimal_execution(self):
                kappa = np.sqrt(self.lamb * self.sigma ** 2 / self.eta)
                t = np.linspace(0, self.T, self.N + 1)
                xt_sum = (self.X * np.sinh(kappa * (self.T - t)) /
                          np.sinh(kappa * self.T))
                xt = -np.diff(xt_sum, prepend=0)
                xt[0] = 0
                return t, xt

In [5]: T = 10  
        N = 10  
        S0 = 1  
        sigma = 0.15  
        X = 1  
        gamma = 0.1  
        eta = 0.1  
        lamb_high = 0.2  
        lamb_low = 0.0001  

In [6]: ac = AlmgrenChriss(T, N, S0, sigma, X, gamma, eta, lamb_high)

In [7]: t, xth = ac.optimal_execution()

In [8]: t
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Out[8]: array([ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9., 10.])

In [9]: xth.round(3)  
Out[9]: array([0.   , 0.197, 0.161, 0.132, 0.109, 0.091, 0.077, 0.067, 0.059,
               0.054, 0.052])

In [10]: ac.lamb = lamb_low

In [11]: t, xtl = ac.optimal_execution()
         xtl.round(3)  
Out[11]: array([0. , 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1])

In [12]: plt.plot(t, ac.X - xth.cumsum(), 'r', lw=1,
                  label='high $\\lambda$ (position)')
         plt.plot(t, xth, 'rs', markersize=4,
                  label='high $\\lambda$ (trade)')
         plt.plot(t, ac.X- xtl.cumsum(), 'b--', lw=1,
                  label='low $\\lambda$ (position)')
         plt.plot(t, xtl, 'bo', markersize=4,
                  label='low $\\lambda$ (trade)')
         plt.xlabel('trading day')
         plt.ylabel('shares (normalized to 1)')
         plt.legend();

The time horizon in trading days

The number of trading days

The initial stock price (normalized to 1)

The volatility of the stock price (quite high)

The total position to be liquidated (normalized to 1)

The permanent impact factor

The temporary impact factor

The high and low risk aversion factors for the agent

The trading trajectory for high risk aversion

The trading trajectory for low risk aversion
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Figure 9-1. Optimal execution for high and low risk aversion (λ)

Fourth, we implement the simulation of the stock price process. To show meaningful
effects throughout, the volatility factor has been set quite high, given the implementa‐
tion of the Monte Carlo simulation (MCS) with regard to the random numbers
drawn:

In [13]: from numpy.random import default_rng

In [14]: class AlmgrenChriss(AlmgrenChriss):
             def simulate_stock_price(self, xt, seed=None):
                 rng = default_rng(seed=seed)
                 S = np.zeros(self.N + 1)  
                 S[0] = self.S0  
                 P = np.zeros(self.N + 1)  
                 P[0] = self.S0  
                 for t in range(1, self.N + 1):
                     dZ = rng.normal(0, np.sqrt(self.dt))
                     S[t] = S[t - 1] + sigma * dZ  
                     P[t] = S[t] - self.gamma * xt[:t + 1].sum()  
                 return S, P

Simulated stock price path

Adjusted stock price path for permanent impact

The following examples illustrate the impact of high and low risk aversion on the
stock price over time. With high λ, the stock is more impacted early on than with low
λ. This is reasonable because high risk aversion leads, by comparison, to larger quan‐
tities sold early on. Figure 9-2 illustrates the effects visually:
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In [15]: ac = AlmgrenChriss(T, N, S0, sigma, X, gamma, eta, lamb_high)

In [16]: t, xth = ac.optimal_execution()

In [17]: xth.round(2)
Out[17]: array([0.  , 0.2 , 0.16, 0.13, 0.11, 0.09, 0.08, 0.07, 0.06, 0.05,
          0.05])

In [18]: seed = 250

In [19]: S, Ph = ac.simulate_stock_price(xth, seed=seed)

In [20]: ac.lamb = lamb_low

In [21]: t, xtl = ac.optimal_execution()

In [22]: xtl.round(2)
Out[22]: array([0. , 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1])

In [23]: S, Pl = ac.simulate_stock_price(xtl, seed=seed)

In [24]: plt.plot(t, S, 'b', lw=1, label='simulated stock price path')
         plt.plot(t, Ph, 'r--', lw=1, label='adjusted path (high $\\lambda$)')
         plt.plot(t, Pl, 'g:', lw=1, label='adjusted path (low $\\lambda$)')
         plt.xlabel('trading day')
         plt.ylabel('stock price (normalized to 1)')
         plt.legend();

Figure 9-2. Adjusted stock price paths for high and low risk aversion (λ)
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Parameter Values

The parameter values chosen in this section are relatively extreme,
such as for the volatility of the stock price—given that the time
horizon is a only few days. This is done to generate noticeable
effects from the simulation and when changing, for example, the
risk aversion parameter. In practical applications, all parameters
should be carefully calibrated to market realities.

The final method added to the AlmgrenChriss class is for the calculation of the single
cost factors and the total execution cost. As the numbers demonstrate, high risk aver‐
sion leads to high total execution costs, while low risk aversion leads to reduced costs
in all categories. The permanent impact costs are almost comparable. The temporary
impact costs are somewhat higher in the high λ case because of the quadratic term in
the calculation formula. The largest difference, however, is observed in the execution
risk. That number is much higher due to the much higher λ factor in the calculation
formula:

In [25]: class AlmgrenChriss(AlmgrenChriss):
             def calculate_costs(self, xt):
                 temporary_cost = np.sum(self.eta *
                             (xt / self.dt) ** 2 * self.dt)
                 permanent_cost = np.sum(self.gamma * np.cumsum(xt) * xt)
                 execution_risk = self.lamb * self.sigma ** 2 * np.sum(
                     (np.cumsum(xt[::-1])[::-1] / self.dt) ** 2 * self.dt)
                 TEC = temporary_cost + permanent_cost + execution_risk
                 return temporary_cost, permanent_cost, execution_risk, TEC

In [26]: ac = AlmgrenChriss(T, N, S0, sigma, X, gamma, eta, lamb_high)

In [27]: t, xth = ac.optimal_execution()

In [28]: tc, pc, er, TEC = ac.calculate_costs(xth)

In [29]: print(f'lambda = {ac.lamb}')
         print(f'temporary cost = {tc:7.4f}')
         print(f'permanent cost = {pc:7.4f}')
         print(f'execution risk = {er:7.4f}')
         print(f'total ex. cost = {TEC:7.4f}')  
         lambda = 0.2
         temporary cost =  0.0122
         permanent cost =  0.0561
         execution risk =  0.0165
         total ex. cost =  0.0848

In [30]: ac.lamb = lamb_low

In [31]: t, xtl = ac.optimal_execution()

In [32]: tc, pc, er, TEC = ac.calculate_costs(xtl)
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In [33]: print(f'lambda = {ac.lamb}')
         print(f'temporary cost = {tc:7.4f}')
         print(f'permanent cost = {pc:7.4f}')
         print(f'execution risk = {er:7.4f}')
         print(f'total ex. cost = {TEC:7.4f}')  
         lambda = 0.0001
         temporary cost =  0.0100
         permanent cost =  0.0550
         execution risk =  0.0000
         total ex. cost =  0.0650

Total execution costs for high risk aversion (λ)

Total execution costs for low risk aversion (λ)

Importance of Risk Aversion
A somewhat extreme analogy might further illustrate the role of risk aversion in the
AC99 model. Suppose you are in a building in which a small fire breaks out. If you
are extremely risk averse, you run out of the building and call the firefighters. In the
meantime, the fire spreads further in the building and damages more and more furni‐
ture as time passes. If you are not that risk averse, you stay calm, look for a fire extin‐
guisher, try to contain the fire, and reduce potential damage in the building. In the
meantime, you can still call the firefighters, who will fully get the fire under control
once they arrive. The damage is much smaller in the second case than in the first one,
but at the risk of getting injured or even worse.

A similar story can be told about a store that is in need of liquidity. The store man‐
ager can decide to dump all products at a discount of 80% on a single day (in a fire
sale) or they can decide on a longer sale period at average discounts of 40%.

In the AC99 model, as a rule of thumb, the quantities to be traded on the single trad‐
ing days are equal in the case of a risk-neutral agent, that is, an agent which is not risk
averse at all. On the other hand, a risk averse agent wants to get rid of larger quanti‐
ties early on but then at (much) higher execution costs.

The next section implements an execution environment based on the AC99 model.

Execution Environment
For the Execution class, the parameters and attributes are the same as for the
AlmgrenChriss class, with one addition for the number of episodes:

In [34]: class Execution:
             def __init__(self, T, N, sigma, X, gamma, eta, lamb):
                 self.T = T
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                 self.N = N
                 self.dt = T / N
                 self.sigma = sigma
                 self.X = X
                 self.gamma = gamma
                 self.eta = eta
                 self.lamb = lamb
                 self.episode = 0

The state of the execution environment is given by the complete liquidation trajec‐
tory, plus the remaining shares, the time passed (in percent), and the current trade
(action):

In [35]: class Execution(Execution):
             def _get_state(self):
                 s = np.array([self.X_,  
                             self.bar / self.N])  
                 state = np.hstack((self.xt, s))  
                 return state, {}
             def reset(self):
                 self.bar = 0
                 self.treward = 0
                 self.episode += 1
                 self.X_ = self.X  
                 self.xt = np.zeros(self.N + 1)  
                 self.tec = pd.DataFrame(
                     {'pc': 0, 'tc': 0, 'er': 0}, index=[0])  
                 return self._get_state()

The remaining shares

The time passed (percent)

The full state array object

The trading trajectory object

The DataFrame object for cost storage

The major task for the .step() method is the calculation and storage of the single
cost components and the TEC. There is also a large penalty added to the TEC when
there are shares remaining at the end of the trading period:

In [36]: class Execution(Execution):
             def step(self, action):
                 self.bar += 1
                 self.xt[self.bar] = action  
                 self.X_ -= action  
                 pc = np.sum(self.gamma *
                         np.cumsum(self.xt) * self.xt)  
                 tc = np.sum(self.eta *
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                         (self.xt / self.dt) ** 2 * self.dt)  
                 er = self.lamb * self.sigma ** 2 * np.sum(
                     (np.cumsum(self.xt[::-1])[::-1] / self.dt) ** 2
                     * self.dt)  
                 df = pd.DataFrame({'pc': tc, 'tc': pc, 'er': er},
                                   index=[0])  
                 self.tec = pd.concat((self.tec, df))  
                 cost = self.tec.diff().fillna(0).iloc[-1]  
                 tec = cost.sum()  
                 self.state, _ = self._get_state()
                 pen = 0
                 if self.bar < self.N:
                     if self.X_ <= 0.0001:
                         done = True
                     else:
                         done = False
                 elif self.bar == self.N:
                     pen = abs(self.X_) * 10  
                     done = True
                 return self.state, -(tec + pen), done, False, {}

The current trade (action) is added.

The remaining shares are adjusted.

The costs are calculated and stored.

A penalty is added for nonliquidated shares.

The following code illustrates the interaction with the environment based on simple
liquidation strategies. The agent is assumed to be almost risk neutral (low λ). The
first example liquidates the position on the first trading day completely. The TEC are
accordingly on their highest possible level. The second example liquidates 50% on the
first trading day and 50% on the second trading day. The total liquidation costs are
much lower. The third example liquidates the position in 10 equal trades, which gives
the minimal TEC as calculated before:

In [37]: execution = Execution(T, N, sigma, X, gamma, eta, lamb_low)

In [38]: execution.reset()
         execution.step(1.0)  
Out[38]: (array([0. , 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ,
          0.1]),
          -0.2000045,
          True,
          False,
          {})

In [39]: execution.reset()
Out[39]: (array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.]), {})
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In [40]: execution.step(0.5)  
Out[40]: (array([0. , 0.5, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.5,
          0.1]),
          -0.050001125,
          False,
          False,
          {})

In [41]: execution.step(0.5)  
Out[41]: (array([0. , 0.5, 0.5, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ,
          0.2]),
          -0.0750039375,
          True,
          False,
          {})

In [42]: execution.reset()
         cost = list()
         for i in range(10):
             cost.append(execution.step(0.1)[1])  
         print(f'TEC = {sum(cost):.3f}')
         TEC = -0.065

Liquidates 100% on the first trading day

Liquidates 50% on the first trading day

Liquidates 50% on the second trading day

Liquidates 10% on each of the 10 trading days

Random Agent
This section implements a random agent for interaction with the Execution environ‐
ment. The problem at hand requires a more specialized approach than just drawing a
few random numbers independently. One major requirement is that the random
numbers—that is, the random trades—for the single trading days add up to one. To
this end, one can use the Dirichlet distribution, which is implemented in the
numpy.random sub-package (see Dirichlet). It allows the drawing of multiple random
numbers that by definition add up to one.

The following examples show the TEC for random liquidation trajectories for both
low and high risk aversion:

In [43]: execution = Execution(T, N, sigma, X, gamma, eta, lamb_low)  

In [44]: rng = default_rng(seed=100)
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In [45]: def gen_rn():
             alpha = np.ones(N)  
             rn = rng.dirichlet(alpha)  
             rn = np.insert(rn, 0, 0)  
             return rn

In [46]: rn = gen_rn()
         rn  
Out[46]: array([0.        , 0.15895546, 0.12542041, 0.07457818, 0.00209012,
                0.08708588, 0.02557811, 0.05065022, 0.23502973, 0.16044992,
                0.08016197])

In [47]: rn.sum()  
Out[47]: 1.0000000000000002

In [48]: def execute_trades():
             for _ in range(5):
                 execution.reset()
                 rn = gen_rn()
                 for i in range(1, 11):
                     execution.step(rn[i])  
                 tec = execution.tec.iloc[-1].sum()
                 print(f'TEC = {tec:.3f}')

In [49]: execute_trades()  
         TEC = 0.072
         TEC = 0.078
         TEC = 0.081
         TEC = 0.071
         TEC = 0.099

In [50]: execution = Execution(T, N, sigma, X, gamma, eta, lamb_high)  

In [51]: execute_trades()  
         TEC = 0.105
         TEC = 0.103
         TEC = 0.097
         TEC = 0.097
         TEC = 0.093

Execution environment with low risk aversion.

Draws the random, Dirichlet-distributed numbers.

Adds a zero as the first value.

A sample set of random numbers.

They add up to one as desired.
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Executes the random trades.

The resulting TEC are higher than the minimal TEC.

Execution environment with high risk aversion.

Again, the TEC are higher than the minimal TEC.

Execution Agent
The basic setup for optimal execution seems similar to the one for dynamic hedging
in Chapter 7 and the one for asset allocation in Chapter 8. After all, the agent is sup‐
posed to choose a single floating-point number per action. However, the optimal exe‐
cution problem is different in that every action is bound above by the remaining
shares and in that all actions over the trading period must add up to one.

The rather simple algorithmic implementation in the previous chapters does not
work well in the context of this chapter. Previously, every single action was basically
independent of the other actions. Here, this is not the case. The set of feasible actions
and the optimal trade on the tenth trading day, say, are influenced by the actions
taken on all other trading days before.

Therefore, this section introduces what is called an actor-critic algorithm for rein‐
forcement learning (RL). While this type of algorithm shares many characteristics
with deep Q-learning (DQL) algorithms, they are considered to form their own cate‐
gory of algorithm. An actor-critic algorithm has the following major elements:

Actor or action policy
The actor—which is represented by the action policy, which in turn is modeled
as a deep neural network (DNN)―chooses an action given a state of the
environment.

Critic or value function
The critic, which is represented by the value function (again, typically a DNN),
maps a certain state to a value where higher usually means better.

In the implementation, three major steps are repeatedly executed:

1. The actor chooses an action given a certain state and its policy.
2. Based on the critic’s value function, the critic provides feedback on these actions

by comparing the predicted value of the new state with the actual reward
received and the estimated value of the previous state.

3. The actor uses the feedback to update its policy to increase the expected reward.
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In this context, it is important that the feedback is primarily based on whether the
actor’s action is better than expected or worse. The critic also updates its policy
according to the observed reward and the estimated value for the new state.

Algorithmic Differences

In the previous two chapters, the DQL agents use only one policy
Q to map a state and an action simultaneously to a single value
(s,a) ↦ Q(s,a). Changing the action changes the value, which
allows for an optimization procedure to find the action that maxi‐
mizes the value for the given state. Such an approach is typically
called a value-based method in DQL. With the actor-critic algo‐
rithm, a separation takes place into two major elements: the action
policy A, mapping a state to an action s ↦ A(s); and a value func‐
tion Q, mapping a state to a value s ↦ Q(s).

The following Python code implements such an actor-critic algorithm. Overall, the
implementation is still quite similar to the previous implementations of the DQL
agents. First, it implements the initialization part:

In [52]: from dqlagent import *

In [53]: random.seed(100)
         tf.random.set_seed(100)

In [54]: opt = keras.optimizers.legacy.Adam

In [55]: class ExecutionAgent(DQLAgent):
             def __init__(self, symbol, feature, n_features, env,
                          hu=24, lr=0.0001, rng='equal'):
                 self.epsilon = 1.0
                 self.epsilon_decay = 0.9975
                 self.epsilon_min = 0.1
                 self.memory = deque(maxlen=2000)
                 self.batch_size = 32
                 self.eta = 1.0
                 self.trewards = list()
                 self.max_treward = -np.inf
                 self.n_features = n_features
                 self.env = env
                 self.episodes = 0
                 self.rng = rng
                 self._generate_rn()  
                 self.actor = self._create_model(hu, lr, 'sigmoid')  
                 self.critic = self._create_model(hu, lr, 'linear')  

Generates the first set of random numbers

Creates the DNN for the actor
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Creates the DNN for the critic

Second, the code implements the generation of appropriate random numbers for the
random trades to be executed during exploration. The implementation makes sure
that sets of random numbers can be drawn that exhibit different characteristics:

In [56]: class ExecutionAgent(ExecutionAgent):
             def _generate_rn(self):
                 if self.rng == 'equal':
                     alpha = np.ones(self.env.N)  
                 elif self.rng == 'decreasing':
                     alpha = range(self.env.N, 0, -1)   
                 else:
                     alpha = rng.random(self.env.N)  
                 rn = rng.dirichlet(alpha)
                 self.rn = np.insert(rn, 0, 0)

Array with equal values

Array with decreasing values

Array with purely random values

Third, the code implements the creation of the DNNs for the actor and the critic. The
implementation allows you to choose the appropriate activation function for the two
DNNs. For the actor, the sigmoid function is appropriate because the actor is sup‐
posed to choose an action between 0 and 1. For the critic, the linear function is
appropriate:

In [57]: class ExecutionAgent(ExecutionAgent):
             def _create_model(self, hu, lr, out_activation):
                 model = Sequential()
                 model.add(Dense(hu, input_dim=self.n_features,
                                 activation='relu'))
                 model.add(Dense(hu, activation='relu'))
                 model.add(Dense(1, activation=out_activation))
                 model.compile(loss='mse', optimizer=opt(learning_rate=lr))
                 return model

Fourth, the code implements the .act() method. Here, the agent is supposed to rely
solely on exploration for a relatively large number of episodes. This provides the
agent with enough experience before it relies on its action policy and value function:

In [58]: class ExecutionAgent(ExecutionAgent):
             def act(self, state):
                 if random.random() <= self.epsilon or self.episodes < 250:  
                     return min(self.rn[self.f], state[0, -2])  
                 else:
                     action = self.actor.predict(state)[0, 0]  
                 return action
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4 This is done in this place only for convenience. It prevents the adjustment of the rather long .learn()
method as inherited from the DQLAgent class.

Independent of self.epsilon, the agent only explores for a larger number of
episodes.

Random actions (trades) are clipped at the value for the remaining shares.

The actor chooses an optimal trade according to its policy.

Fifth, the code implements the major part that represents the actor-critic algorithm
in the .replay() method:

In [59]: class ExecutionAgent(ExecutionAgent):
             def replay(self):
                 batch = random.sample(self.memory, self.batch_size)
                 for state, action, next_state, reward, done in batch:
                     target = reward
                     if not done:
                         target += self.eta * self.critic.predict(
                                 next_state)[0, 0]  
                         self.critic.fit(state, np.array([target]),
                                 epochs=1, verbose=False)  
                         # advantage = target - self.critic.predict(state)[0, 0]
                         self.actor.fit(state, np.array([action]),
                                 # sample_weight=np.array([advantage]),
                                 epochs=1, verbose=False)  
                 if self.epsilon > self.epsilon_min:
                     self.epsilon *= self.epsilon_decay
                 self._generate_rn()  

Adds the expected, discounted value for the next state to the reward

Updates the value function of the critic

Updates the action policy of the actor

Generates a new set of random actions4

Finally, the code implements the .test() method, which shows only minor changes
compared with the ones from the previous chapters:

In [60]: class ExecutionAgent(ExecutionAgent):
             def test(self, episodes, verbose=True):
                 for e in range(1, episodes + 1):
                     state, _ = self.env.reset()
                     state = self._reshape(state)
                     treward = 0
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                     for _ in range(1, self.env.N + 1):
                         action = self.actor.predict(state)[0, 0]  
                         state, reward, done, trunc, _ = self.env.step(action)
                         state = self._reshape(state)
                         treward += reward
                         if done:
                             templ = f'total reward={treward:4.3f}'
                             if verbose:
                                 print(templ)
                             break
                     print(self.env.xt)

The actor chooses an optimal action according to its policy.

With the ExecutionAgent class completed, training of the agent can take place. First,
there is training for the case of the low risk aversion factor. In that case, the agent
learns the optimal strategy—that is, the liquidation of the initial position in equal
trade sizes—rather quickly:

In [61]: execution = Execution(T, N, sigma, X, gamma, eta, lamb_low)

In [62]: executionagent = ExecutionAgent(None, feature=None,
                             n_features=execution.N + 3,
                             env=execution, hu=64, lr=0.0001,
                             rng='equal')

In [63]: episodes = 2500

In [64]: %time executionagent.learn(episodes)
         episode=2500 | treward= -0.270 | max= -0.065
         CPU times: user 2min 22s, sys: 42.7 s, total: 3min 5s
         Wall time: 2min 10s

In [65]: executionagent.test(1)
         total reward=-0.912
         [0.         0.09795619 0.09197164 0.09160777 0.09103356 0.09467734
          0.09440769 0.09722784 0.08991307 0.08550413 0.07989337]

In [66]: xtl_ = execution.xt
         xtl_.sum()
Out[66]: 0.9141926020383835

Next, there is training for the case of the high risk aversion factor. In this case, the
agent learns pretty well that it is optimal to sell more shares earlier and to decrease
the trade size over time:

In [67]: execution = Execution(T, N, sigma, X, gamma, eta, lamb_high)

In [68]: executionagent = ExecutionAgent(None, feature=None,
                             n_features=execution.N + 3,
                             env=execution, hu=64, lr=0.0001,
                             rng='decreasing')
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In [69]: %time executionagent.learn(episodes)
         episode=2500 | treward= -0.280 | max= -0.085
         CPU times: user 2min 23s, sys: 41.8 s, total: 3min 5s
         Wall time: 2min 11s

In [70]: executionagent.test(1)
         total reward=-0.199
         [0.         0.18177003 0.16303268 0.14493093 0.11896227 0.10893401
          0.08658476 0.07199006 0.05079928 0.03398583 0.02749112]

In [71]: xth_ = execution.xt
         xth_.sum()
Out[71]: 0.9884809665381908

Finally, Figure 9-3 compares the learned trading trajectories of the agent with the
optimal ones. With the appropriate configuration of the random number and action
generation for exploration, the agent is able to learn the optimal execution trajecto‐
ries quite well. However, the agent does not match the optimal strategies perfectly for
the configurations used:

In [72]: plt.plot(xtl[1:], 'b', lw=1, label='optimal for low $\lambda$')
         plt.plot(xtl_[1:], 'b:', lw=1, label='learned for low $\lambda$')
         plt.plot(xth[1:], 'r--', lw=1, label='optimal for high $\lambda$')
         plt.plot(xth_[1:], 'r-.', lw=1, label='learned for high $\lambda$')
         plt.xlabel('trading day')
         plt.ylabel('trade size')
         plt.legend();

Figure 9-3. Optimal and learned trading trajectories for high and low λ
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Conclusions
The optimal execution of large trades is an important problem both in theoretical
and (even more so) in practical finance. In reality, even relatively small trades can
move prices significantly—contrary to many financial models that assume perfectly
liquid markets. Therefore, selling a large position in a stock might have a large impact
on the stock price. On the other hand, distributing the liquidation over a longer
period introduces market price risk—that is, the price might move unfavorably inde‐
pendent of the liquidation. For a risk-neutral agent, that latter risk is not of particular
importance. However, it is important to a risk-averse agent. The problem that arises
is a dynamic optimization problem in which the agent’s goal is to minimize total
transaction costs given a certain level of risk aversion.

In the AC99 model, the optimal execution policy for a risk-neutral agent, therefore, is
characterized by equal trade sizes over the assumed number of trading days. By
contrast, the optimal policy for a risk-averse agent is to sell more shares in the begin‐
ning and fewer shares later on because this reduces the risk resulting from market
price changes. With appropriate priming of the execution agent in the form of
different types of random numbers/actions—either decreasing on average or being
more equal leveled—the agent is able to learn the optimal execution trajectories quite
well.

The execution agent in this chapter is modeled based on an actor-critic algorithm. It
shares some similarities with the value-based DQL agent from previous chapters,
but there are also major differences. While the DQL agents use a single network to
come up with an optimal action for a given state, the actor-critic agent uses one net‐
work for the optimal action policy (actor) and one for the value function (critic) that
both interact with each other. This architecture is similar to the two networks of a
generative adversarial network (GAN) interacting with each other to generate syn‐
thetic data (see Chapter 5). Using this algorithm, the execution agent can come up
with an optimal policy that spans multiple, interrelated actions. This is in contrast to
the previous problems where the actions of the agents are primarily independent of
each other, and the current action is not directly connected to historical or future
actions.
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Loosely Connected Versus Tightly Connected Actions

The financial problems considered in Chapters 6–8 can be com‐
pared, to some extent, to betting on the outcomes of a repeated,
biased coin-tossing game. The problem is about taking actions that,
over time, lead to a maximum reward. But the actions taken are
neither conditioned on past actions nor on future actions—just on
the current state.
The optimal execution problem considered in this chapter is rather
like a chess game where the current move is, at least in part, depen‐
dent on past moves and is also dependent on potential future
moves. With the optimal execution problem, there is the major
constraint that all actions taken need to add up to the original posi‐
tion. This tightly connects all the actions to each other.
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CHAPTER 10

Concluding Remarks

Time and uncertainty are the central elements that influence financial economic
behavior. It is the complexity of their interaction that provides intellectual challenge
and excitement to the study of finance. To analyze the effects of this interaction prop‐
erly often requires sophisticated analytical tools.

—Merton (1990)

Reinforcement learning (RL) has undoubtedly become a central and important algo‐
rithm and approach in machine learning (ML) and AI in general. There are many
different flavors of the basic algorithmic idea, an overview of which can be found in
Sutton and Barto (2018). This book primarily focuses on deep Q-learning (DQL).
The fundamental idea of DQL is that the agent learns an optimal action policy that
assigns a value to each feasible state-action combination. The higher the value, the
better an action given a certain state. The book also provides in Chapter 9 an example
of a simple actor-critic algorithm. In this case, the agent has the optimal action policy
separated from the value function. At the core of these algorithms are deep neural
networks (DNNs) that are used to approximate optimal action policies and, in the
case of actor-critic algorithms, also value functions.

Part I introduces the basics of DQL and provides first, simple applications. Finance as
a domain is characterized by limited data availability. A historical time series, say, for
the price of a share of a stock, is at a certain point in time given and fixed. This is in
contrast to many other domains in which data can be actively generated in volumes
necessary to properly train RL algorithms. The canonical examples in this context are
board games. An RL algorithm can interact with an environment and play, say, mil‐
lions of chess games against another engine or even against itself, thereby increasing
the set of experiences in an arbitrary and theoretically unlimited fashion.

Part II addresses this problem and introduces approaches to enriching the available
financial data through methods from Monte Carlo simulation (MCS) and generative
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adversarial networks (GANs). The use of MCS has a long history in finance, dating
back to the 1970s. Many subdomains of finance, such as derivatives analytics and risk
management, have benefited from this flexible and powerful numerical method.
GANs, on the other hand, are a rather recent innovation that allow the generation of
synthetic financial data sets that share statistical characteristics with real financial
data sets in a way that they become indistinguishable from a statistical point of view.
GANs also rely on DNNs at their core.

Part III applies DQL to important dynamic optimization problems in finance: algo‐
rithmic trading, dynamic hedging of options, dynamic asset allocation, and optimal
execution. DQL in the context of algorithmic trading is simplified to a context where
the agent only needs to decide whether to go long or short on a financial instrument.
In other words, the agent has only two actions to choose from. Dynamic hedging and
dynamic asset allocation, on the other hand, are optimal control problems where the
agent has, in principle, an unlimited set of feasible actions during each step. There‐
fore, additional optimization procedures are generally required to come up with opti‐
mal actions.

DQL takes into account by construction the immediate reward of an action and the
discounted, delayed reward of an optimal future action. By the Bellmann principle,
this ensures that the action policy over time leads to an approximately optimal out‐
come. The example in Chapter 9 is somewhat special in that all actions are tightly
connected through a constraint, which is not the case in the other applications.
Therefore, the actor-critic algorithm is introduced in this context because it can han‐
dle such problems often better than a standard DQL approach.

The overall approach in this book is a practical one. This means that theory is only
presented at a minimal level, or even omitted altogether. This also means that the
implementations are kept concise and simple to help readers focus on the key issues
and algorithmic aspects. However, this also implies that there are many opportunities
to make the implementations more realistic, that is, closer to financial reality and
more sophisticated on the side of the agents. The hope is that readers can take the
provided implementations as starting points and frameworks and add their own
ideas and improvements.

With regard to the applications, the environments presented in the book do not lev‐
erage all approaches for data augmentation as presented in Part II in all settings. For
example, the book does not use GANs for the applications part, but rather, it uses
more simple approaches such as fixed historical data or MCS. However, it is straight‐
forward to replace the data-generating parts of the different environments with alter‐
native approaches or to even come up with completely different environments.
Furthermore, the MCS parts of the environments generally use only simple bench‐
mark models such as geometric Brownian motion for the simulation. More sophisti‐
cated and realistic models, such as jump diffusions or stochastic volatility models,
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could be used easily instead. In addition, the environments assume “perfect” markets
in several respects. For example, transaction costs are neglected and perfect market
liquidity is assumed in general. In this regard, Chapter 9 is again the exception in that
execution costs and market impact are modeled explicitly.

On the other hand, agents can also be implemented in a more powerful way. The pre‐
sented implementations generally rely on pretty basic parts, such as for the optimal
policy DNNs. The same holds true for the modeling of the state, which primarily
defines the interaction between the environment and the agent. The presented imple‐
mentations generate a pretty simple, parsimonious state object with only a few vari‐
ables. Adjusting both the environments and the agents in this regard is also quite
straightforward and will often lead to an improved performance of the agent.

Dynamic optimization problems have a long history in finance and play an impor‐
tant role in many areas. The book by Merton (1990), for example, provides a collec‐
tion of early work on the topic in the form of continuous-time models. RL, DQL, and
similar algorithms are enrichments of the tool set already available to financial aca‐
demics and practitioners alike. In many instances, RL allows the application to and
(approximate) solution of dynamic optimization problems in finance that other
methods might not be able to solve. Therefore, it is to be expected that RL will play an
increasingly important role in the future in financial education and research as well
as in real-world applications.
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M
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transition function, 21
trend parameter, 59
trial-and-error learning, 11
two-asset dynamic allocation, 146-154
two-fund separation, 130-146

U
universal approximation theorem, 25
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visualizations, 80
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