

Dynamic System Modelling and Analysis with MATLAB and Python

IEEE Press
445 Hoes Lane

Piscataway, NJ 08854

IEEE Press Editorial Board
Sarah Spurgeon, Editor in Chief

Jón Atli Benediktsson Andreas Molisch Diomidis Spinellis
Anjan Bose Saeid Nahavandi Ahmet Murat Tekalp

Adam Drobot
Peter (Yong) Lian

Jelrey Reed

Thomas Robertazzi

Dynamic System Modelling and Analysis
with MATLAB and Python

For Control Engineers

Jongrae Kim
University of Leeds
Leeds, UK

IEEE Press Series on Control Systems Theory and Applications
Maria Domenica Di Benedetto, Series Editor

Copyright © 2023 by The Institute of Electrical and Electronics Engineers, Inc. All rights
reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise,
except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley &
Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
elorts in preparing this book, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this book and specimcally disclaim any implied
warranties of merchantability or mtness for a particular purpose. No warranty may be created or
extended by sales representatives or written sales materials. The advice and strategies contained
herein may not be suitable for your situation. You should consult with a professional where
appropriate. Further, readers should be aware that websites listed in this work may have
changed or disappeared between when this work was written and when it is read. Neither the
publisher nor author shall be liable for any loss of promt or any other commercial damages,
including but not limited to special, incidental, consequential, or other damages.
For general information on our other products and services or for technical support, please
contact our Customer Care Department within the United States at (800) 762-2974, outside the
United States at (317) 572-3993 or fax (317) 572-4002.
Wiley also publishes its books in a variety of electronic formats. Some content that appears in
print may not be available in electronic formats. For more information about Wiley products,
visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data Applied for:

Hardback: 9781119801627

Cover Design: Wiley
Cover Images: © Bocskai Istvan/Shutterstock

Set in 9.5/12.5pt STIXTwoText by Straive, Chennai, India

To Miyoung

vii

Contents

Preface xiii
Acknowledgements xv
Acronyms xvii
About the Companion Website xix

1 Introduction 1
1.1 Scope of the Book 1
1.2 Motivation Examples 2
1.2.1 Free-Falling Object 2
1.2.1.1 First Program in Matlab 4
1.2.1.2 First Program in Python 10
1.2.2 Ligand–Receptor Interactions 14
1.3 Organization of the Book 21

Exercises 21
Bibliography 22

2 Attitude Estimation and Control 23
2.1 Attitude Kinematics and Sensors 23
2.1.1 Solve Quaternion Kinematics 26
2.1.1.1 MATLAB 26
2.1.1.2 Python 29
2.1.2 Gyroscope Sensor Model 33
2.1.2.1 Zero-Mean Gaussian White Noise 33
2.1.2.2 Generate Random Numbers 34
2.1.2.3 Stochastic Process 40
2.1.2.4 MATLAB 41
2.1.2.5 Python 45
2.1.2.6 Gyroscope White Noise 49
2.1.2.7 Gyroscope Random Walk Noise 50
2.1.2.8 Gyroscope Simulation 53

Administrator
Rectangle

viii Contents

2.1.3 Optical Sensor Model 57
2.2 Attitude Estimation Algorithm 64
2.2.1 A Simple Algorithm 64
2.2.2 QUEST Algorithm 65
2.2.3 Kalman Filter 66
2.2.4 Extended Kalman Filter 75
2.2.4.1 Error Dynamics 76
2.2.4.2 Bias Noise 77
2.2.4.3 Noise Propagation in Error Dynamics 78
2.2.4.4 State Transition Matrix, Φ 84
2.2.4.5 Vector Measurements 84
2.2.4.6 Summary 86
2.2.4.7 Kalman Filter Update 86
2.2.4.8 Kalman Filter Propagation 87
2.3 Attitude Dynamics and Control 88
2.3.1 Dynamics Equation of Motion 88
2.3.1.1 MATLAB 91
2.3.1.2 Python 94
2.3.2 Actuator and Control Algorithm 95
2.3.2.1 MATLAB Program 98
2.3.2.2 Python 101
2.3.2.3 Attitude Control Algorithm 103
2.3.2.4 Altitude Control Algorithm 105
2.3.2.5 Simulation 106
2.3.2.6 MATLAB 107
2.3.2.7 Robustness Analysis 107
2.3.2.8 Parallel Processing 110

Exercises 113
Bibliography 115

3 Autonomous Vehicle Mission Planning 119
3.1 Path Planning 119
3.1.1 Potential Field Method 119
3.1.1.1 MATLAB 122
3.1.1.2 Python 126
3.1.2 Graph Theory-Based Sampling Method 126
3.1.2.1 MATLAB 128
3.1.2.2 Python 129
3.1.2.3 Dijkstra’s Shortest Path Algorithm 130
3.1.2.4 MATLAB 130
3.1.2.5 Python 131

Contents ix

3.1.3 Complex Obstacles 134
3.1.3.1 MATLAB 135
3.1.3.2 Python 141
3.2 Moving Target Tracking 145
3.2.1 UAV and Moving Target Model 145
3.2.2 Optimal Target Tracking Problem 148
3.2.2.1 MATLAB 149
3.2.2.2 Python 151
3.2.2.3 Worst-Case Scenario 153
3.2.2.4 MATLAB 157
3.2.2.5 Python 159
3.2.2.6 Optimal Control Input 164
3.3 Tracking Algorithm Implementation 167
3.3.1 Constraints 167
3.3.1.1 Minimum Turn Radius Constraints 167
3.3.1.2 Velocity Constraints 169
3.3.2 Optimal Solution 172
3.3.2.1 Control Input Sampling 172
3.3.2.2 Inside the Constraints 175
3.3.2.3 Optimal Input 177
3.3.3 Verimcation Simulation 180

Exercises 182
Bibliography 182

4 Biological System Modelling 185
4.1 Biomolecular Interactions 185
4.2 Deterministic Modelling 185
4.2.1 Group of Cells and Multiple Experiments 186
4.2.1.1 Model Fitting and the Measurements 188
4.2.1.2 Finding Adaptive Parameters 190
4.2.2 E. coli Tryptophan Regulation Model 191
4.2.2.1 Steady-State and Dependant Parameters 194
4.2.2.2 Padé Approximation of Time-Delay 195
4.2.2.3 State-Space Realization 196
4.2.2.4 Python 205
4.2.2.5 Model Parameter Ranges 206
4.2.2.6 Model Fitting Optimization 213
4.2.2.7 Optimal Solution (MATLAB) 221
4.2.2.8 Optimal Solution (Python) 223
4.2.2.9 Adaptive Parameters 226
4.2.2.10 Limitations 226

x Contents

4.3 Biological Oscillation 227
4.3.1 Gillespie’s Direct Method 231
4.3.2 Simulation Implementation 234
4.3.3 Robustness Analysis 241

Exercises 245
Bibliography 246

5 Biological System Control 251
5.1 Control Algorithm Implementation 251
5.1.1 PI Controller 251
5.1.1.1 Integral Term 252
5.1.1.2 Proportional Term 253
5.1.1.3 Summation of the Proportional and the Integral Terms 253
5.1.1.4 Approximated PI Controller 253
5.1.1.5 Comparison of PI Controller and the Approximation 254
5.1.2 Error Calculation: ΔP 260
5.2 Robustness Analysis: 휇-Analysis 269
5.2.1 Simple Examples 269
5.2.1.1 휇 Upper Bound 272
5.2.1.2 휇 Lower Bound 275
5.2.1.3 Complex Numbers in MATLAB/Python 278
5.2.2 Synthetic Circuits 280
5.2.2.1 MATLAB 281
5.2.2.2 Python 281
5.2.2.3 휇-Upper Bound: Geometric Approach 290

Exercises 291
Bibliography 292

6 Further Readings 295
6.1 Boolean Network 295
6.2 Network Structure Analysis 296
6.3 Spatial-Temporal Dynamics 297
6.4 Deep Learning Neural Network 298
6.5 Reinforcement Learning 298

Bibliography 298

Appendix A Solutions for Selected Exercises 301
A.1 Chapter 1 301

Exercise 1.4 301
Exercise 1.5 301

Contents xi

A.2 Chapter 2 302
Exercise 2.5 302

A.3 Chapter 3 302
Exercise 3.1 302
Exercise 3.6 303

A.4 Chapter 4 303
Exercise 4.1 303
Exercise 4.2 303
Exercise 4.7 304

A.5 Chapter 5 304
Exercise 5.2 304
Exercise 5.3 304

Index 307

xiii

Preface

This book is for control engineers to learn dynamic system modelling and sim-
ulation and control design and analysis using MATLAB or Python. The readers
are assumed to have the undergraduate mnal-year level of knowledge on ordinary
dilerential equations, vector calculus, probability, and basic programming.

We have verimed all theMATLAB and Python codes in the book usingMATLAB
R2021a and Python 3.8 in Spyder, the scientimc Python development environment.
To reduce the confusion in running a particular program,most of the programs are
independent on their own. Organizing programming with multiple mles is left as
an advanced skill for readers to learn after reading this book.

Jongrae KimLeeds, West Yorkshire, England, UK
30 November 2021

xv

Acknowledgements

I have learned dynamic modelling and simulation through my undergraduate
and post-graduate education and research projects in the past 30 years. Hence,
this book will not be possible without having my teachers, supervisors, and
collaborators. I thank Dr Jinho Kim, Professor John L. Crassidis, Professor
João P. Hespanhna, Professor Declan G. Bates, Dr Daizhan Cheng, Professor
Kwang-Hyun Cho, Professor Frank Pollick, and Dr Rajeev Krishnadas.

Jongrae Kim

xvii

Acronyms

DCM direction cosine matrix
DNA deoxyribonucleic acid
EKF extended Kalman mlter
KF Kalman mlter
LHS left-hand side
LTI linear time-invariant
mRNA messenger RNA
mRNAP messenger RNA polymerase
N2L Netwton’s second law of motion
ODE ordinary dilerential equation
pdf probability density function
PI proportional integral
QUEST quaternion estimation algorithm
RHS right-hand side
RNA ribonucleic acid

xix

About the Companion Website

This book is accompanied by a companion website.

www.wiley.com/go/kim/dynamicmodeling

This website includes:

● The solutions for the problems listed in the chapters and the program codes used
in Python and MATLAB softwares.

1

1

Introduction

1.1 Scope of the Book

This book is for advanced undergraduate students, post-graduate students, or engi-
neers to acquire programming skills for dynamic system modelling and analysis
using control theory. The readers are assumed to have a basic understanding of
computer programming, ordinary dilerential equations (ODE), vector calculus,
and probability.

Most engineering curricula at the undergraduate level include only an
elementary-level programming course in the early of the undergraduate years.
Only a handful of self-motivated engineering students acquire advanced level
programming skills mainly from self-study through tedious time-consuming
practices and trivial mistakes. As modern engineering systems such as aircraft,
satellite, automobile, or autonomous robots are implemented through inseparable
tight integration of hardware systems and software algorithms, the demand for
engineers having nuent skills in dynamic system modelling and algorithm design
is increasing. In addition, the emergence of interdisciplinary areas merging the
experimental domain with mathematical and computational approaches such
as systems biology, synthetic biology, or computational neuroscience further
increases the necessity of the engineers who understand dynamics and are
capable of computational implementations of dynamic models.

This book aims to mll the gap in learning practical dynamic modelling, simu-
lation, and analysis skills in aerospace engineering, robotics, and biology. Learn-
ing programming in the engineering or biology domain requires not only domain
knowledge but also a robust conceptual understanding of algorithm design and
implementation. It is not, of course, the skills to learn in 14 days or less as many
online courses claim. To be conmdent in dynamic system modelling and analysis
takes more than several years of practice and dedication. This book provides the
starting point of the long journey for the readers to equip and prepare better for
real engineering and scientimc problems.

Dynamic System Modelling and Analysis with MATLAB and Python: For Control Engineers,
First Edition. Jongrae Kim.
© 2023The Institute of Electrical andElectronics Engineers, Inc. Published 2023 by JohnWiley& Sons, Inc.
Companion Website: www.wiley.com/go/kim/dynamicmodeling

2 1 Introduction

1.2 Motivation Examples

1.2.1 Free-Falling Object

Newton’s second law of motion is given by
$

i
Fi =

d
dt

(m푣) (1.1)

whereFi is the i-th external force inNewtons (N) acting on the object characterized
by the mass, m, in kg, d∕dt is the time derivative, t is the time in seconds, 푣 is the
velocity inm/s, andm푣 is themomentumof the object. Newton’s second law states
that the sum of all external forces is equal to the momentum change per unit of time.

Consider a free-falling object shown in Figure 1.1. There exists only one exter-
nal force, i.e. the gravitational force acting downwards in the mgure. Hence, the
left-hand side of (1.1) is simply given by

∑
iFi = Fg, where Fg is the gravitational

force. Introduce the additional assumption that the object is within the reasonable
range from the sea level.With the assumption, the gravitational force,Fg, is known
to be proportional to the mass, and the proportional constant is the gravitational
acceleration constant, g, which is equal to 9.81m/s2 in the sea level. Therefore,
Fg = mg. Replace the left-hand side of (1.1), i.e.

∑
iFi, by Fg = mg provides

mg = Fg =
$

i
Fi =

d
dt

(m푣) (1.2)

where the downward direction is set to the positive direction, which is the opposite
of the usual convention. It highlights that establishing a consistent coordinate system
at the beginning of modelling is vital in dynamic system simulation.

Fg

Figure 1.1 Free-falling object.

Administrator
Highlight

1.2 Motivation Examples 3

From the kinematic relationship between the velocity, 푣, and the displacement,
x, we have

dx
dt

= 푣

where the origin of x is at the initial position of the object, m, and the positive
direction of x is downwards in the mgure. The right-hand side of (1.2) becomes

mg = Fg =
$

i
Fi =

d
dt

(m푣) = d
dt

(
mdx
dt

)

Finally, the leftmost and the rightmost terms are equal to each other as follows:

mg = d
dt

(
mdx
dt

)

and it is expanded as follows:

mg = dm
dt
dx
dt

+md
2x
dt2

Using the short notations, ṁ = dm∕dt, ẋ = dx∕dt, and ẍ = d2x∕dt2, and after
rearrangements, the governing equation is given by

ẍ = g − ṁ
m
ẋ (1.3)

For purely educational purposes, assume that the mass change rate is given by

ṁ = −m + 2 (1.4)

We can identify now that there are three independent time-varying states, which
are the position, x, the velocity, ẋ, and the mass, m. All the other time-varying
states, for example, ẍ and ṁ, can be expressed using the independent state vari-
ables. Demne the state variables as follows:

x1 = x

x2 = ẋ

x3 = m

Obtain the time derivative of each state expressed in the state variable as follows:

ẋ1 = ẋ = x2 (1.5a)

ẋ2 = ẍ = g − −m + 2
m

ẋ = g −
−x3 + 2
x3

x2 (1.5b)

ẋ3 = ṁ = −m + 2 = −x3 + 2 (1.5c)

and this is called the state-space form.
Let the initial conditions be equal to x1(0) = x(0) = 0.0m, x2(0) = ẋ(0) = 0.5m/s,

and x3(0) = m(0) = 5 kg. Equation (1.5) can be written in a compact formusing the

Administrator
Pencil

4 1 Introduction

matrix–vector notations. Demne the state vector, x, as follows:

x =
⎡
⎢
⎢⎣

x1
x2
x3

⎤
⎥
⎥⎦

and the corresponding state-space form is written as

ẋ = f(x) =
⎡
⎢
⎢⎣

x2
g + (x3 − 2)(x2∕x3)

−x3 + 2

⎤
⎥
⎥⎦

(1.6)

The second-order dilerential equation, (1.3), and the mrst-order dilerential
equation, (1.4), are combined into the mrst-order three-dimensional vector
dilerential equation, (1.6). Any higher order dilerential equations can be
transformed into the mrst-order multi-dimensional vector dilerential equation,
ẋ = f(x). Numerical integration methods such as Runge–Kutta integration
(Press et al., 2007) solves the mrst-order ODE. They can solve any high-order
dilerential equations by transforming them into the corresponding mrst-order
multi-dimensional dilerential equation.

1.2.1.1 First Program in Matlab
We are ready to solve (1.6) with the initial condition equal to x(0) = [0.0 0.5 5.0]T ,
where the superscript T is the transpose of the vector. We solve the dileren-
tial equation from t = 0 to t = 5 seconds using Matlab. Matlab includes many
numerical functions and libraries to be used for dynamic simulation and analysis.
A numerical integrator is one of the functions already implemented in Matlab.
Hence, the only task we have to do for solving the dilerential equation is to
learn how to use the existing functions and libraries in Matlab. The complete
programme to solve the free-falling object problem is given in Program 1.1.
Producing Figure 1.2 is left as an exercise in Exercise 1.1.

1 clear ;
2
3 grv_cons t = 9 . 8 1 ; % [m/ s ^2]
4 i n i t _ po s = 0 . 0 ; %[m]
5 i n i t _ v e l = 0 . 5 ; % [m/ s]
6 in i t _mass = 5 . 0 ; %[kg]
7
8 i n i t _ t ime = 0 ; % [s]
9 f i n a l _ t ime = 5 . 0 ; % [s]

10 t ime_ in t e r v a l = [i n i t _ t ime f i n a l _ t ime] ;
11
12 x0 = [i n i t _ po s i n i t _ v e l in i t _mass] ;
13 [tout , xout] = ode45 (@(time , s t a t e) f r e e _ f a l l i n g _ o b j (time , s t a t e ,

g rv_cons t) , t ime_ in t e r va l , x0) ;
14
15 f igure (1) ;
16 plot (tout , xout (: , 1))
17 ylabel (’ p o s i t i o n [m] ’) ;

1.2 Motivation Examples 5

18 xlabel (’ t ime [s] ’) ;
19
20 f igure (2) ;
21 plot (tout , xout (: , 2))
22 ylabel (’ v e l o c i t y [m/ s] ’) ;
23 xlabel (’ t ime [s] ’) ;
24
25 f igure (3) ;
26 plot (tout , xout (: , 3))
27 ylabel (’m(t) [kg] ’) ;
28 xlabel (’ t ime [s] ’) ;
29
30 function dxdt = f r e e _ f a l l i n g _ o b j (time , s t a t e , g rv_cons t)
31 x1 = s t a t e (1) ;
32 x2 = s t a t e (2) ;
33 x3 = s t a t e (3) ;
34
35 dxdt = zeros (3 , 1) ;
36 dxdt (1) = x2 ;
37 dxdt (2) = grv_ const + (x3−2) ∗ (x2 / x3) ;
38 dxdt (3) = −x3 + 2 ;
39 end

Program 1.1 (Matlab) Free-falling object

(a) �gure(1) (b) �gure(2)

(c) �gure(3)

0

200 70

60

50

40

30

20

10

0

5

4.5

4

3.5

3

2.5

2

150

100

P
os

iti
on

 (
m

)

V
el

oc
ity

 (
m

/s
)

m
(t

)
(k

g)

50

0
1 2 3

Time (s)
4 5 0 1 2 3

Time (s)
4 5

0 1 2 3
Time (s)

4 5

Figure 1.2 Free-falling object position, velocity, and mass time histories.

6 1 Introduction

Now, we study the mrst program line by line. The m-script starts with the
command ‘clear’. The clear command removes all variables in the workspace.
In the workspace, there would be some variables demned and used in previous
activities. They may have the same names but dilerent meanings and values in
the current calculation. For example, the gravitational acceleration ‘grv_const’ in
the third line is undemned in the current program and uses a variable of the same
name used to analyse objects falling on the moon. A falling object program in
the Moon was executed earlier, and ‘grv_const’ is still in the workspace. Without
the clear command, the incorrect constant is used in the program producing
wrong results. Hence, it is recommended to clear the workspace before starting
new calculations. We must be careful, however, that the clear command erases
all variables in the workspace. Before the clear command, we check if all values,
which might be generated from a long computer simulation, were saved.

From line 3 to line 12, several constants are demned. Based on the equations we
have seen earlier, it is tempting to write a code as follows:

g = 9 . 81
x = 0 . 0
v = 0 . 5
t = [0 5]
x0 = [x v m]

Program 1.2 (Matlab) Poor style constant demnitions

These seem to look compact and closer to the equations we derived. It is a bad
habit towrite a program in thisway. The list of problems in the above programming
style is as follows:

● It demnes a variable with a single character, ‘g’, ‘x’, ‘v’, etc. Using a single char-
acter variable might cause confusion on the meaning of the variable and lead to
using them in wrong places with incorrect interpretations.

● Numerical numbers are written without units. There is no indication of units of
the numerical values, e.g. 9.81, is it m/s2 or ft/s2?

● It uses magic numbers. What do the numbers, 0 and 5, mean in demning ‘t’?

Program 1.1 uses a better style. The initial position is demned using the variable
name, ‘init_pos’, whose value is 0.0 and the unit is inmetres. Appropriately named
variables reducemistakes and confusion in the program. Program 1.1 indicates the
corresponding unit for each numerical value, e.g. the ‘init mass’ value 5.0 is in kg.
We understand the meaning of each variable by its name. The texts after ‘%’ are
the comments, where we could add various information such as the unit of each
numerical value.

1.2 Motivation Examples 7

In line 13, the built-in Runge–Kutta integrator, ode45(), is used to integrate the
dilerential equation provided by the function, ‘free_falling_obj’, at the end of the
m-script. Frequently, each function is saved as a separate m-script. It could also
be included in the m-script for the cases that the functions might be used in the
specimc m-script only. To include functions in the m-script, they must be placed at
the end of the m-script as in this example.

Functions in Matlab begin with the keyword function and close with the
keyword end. In line 30, ‘dxdt’ is the return variable of the function and
‘free_falling_obj’ is the function name. The function has three input arguments.
A function can have any input argument used by the function. This particular
function, ‘free_falling_obj’, is not an ordinary function, however. This is the
function to describe the ODE. The function is to be passed into the built-in
integrator, ode45. The mrst two arguments of the function for ode45must be time
and states, i.e. t and x in (1.6).

In lines 31–33, the variable ‘state’ is assumed to be a three-dimensional vector,
and each element of the vector corresponds to the states, x1, x2, and x3. In line 35,
the return variable ‘dxdt’ is initialized as [0 0 0] by the built-in function zeros(3,1).
zeros(m,n) creates the m × n matrix mlled in zeros. Lines 36, 37, and 38 demne the
state-space form ODE, (1.6).

The function works perfectly well without the initialization line for ‘dxdt’,
line 35. However, it is not good programming if line 35 is removed. Without the
initialization, ‘dxdt’ in line 36 is a one-dimensional scalar value. In the next lines,
it becomes a two-dimensional value and a three-dimensional value. Each line, the
size of ‘dxdt’ changes, and this requires the computer to mnd additional memory
to store the additional value. This could increase the total computation time
longer and could be noticeably longer if this function is called a million times or
more. Hence, it is better to acquire all the required memory ahead as in line 35.

Efficiency vs. development cycle: We strive to create efficient programs, but
the prototyping phase requires a fast development cycle.

It is vital to have the habit of being conscious of the eociency of algorithm imple-
mentation. On the other hand, try not to overthink the eociency of the program.
Script languages such as Matlab and Python are for rapid implementation and
testing. Hence, it needs a proper balance between optimizing codes and saving the
development time.

Now, we are ready to solve the dilerential equation using the built-in numerical
integrator, ode45. ode45 stands for ODE with Runge–Kutta fourth- and mfth-order

8 1 Introduction

methods. Details of the Runge–Kutta integration methods can be found in Press
et al. (2007).

Recall, the following line from Program 1.1:

13 [tout , xout] = ode45 (@(time , s t a t e) f r e e _ f a l l i n g _ o b j (time , s t a t e ,
g rv_cons t) , t ime_ in t e r va l , x0) ;

When we use ode45, the input argument starts with @ symbol, which is the
function handle. The function handle, @, is used when we pass function A, e.g.
‘free_falling_obj’, to function B, e.g. ode45, where function B would call function
A multiple times. With the function handle, we can control or construct the
function to be passed with some nexibility. ‘@(time,state)’ explicitly indicates
that the function to be passed has two arguments, ‘time’ and ‘state’, and they will
be passed between ode45 and ‘free_falling_obj’ function in the specimc order, i.e.
‘time’ be the mrst and ‘state’ be the second argument. This order is required by the
integrator, ode45.

With the function handle, we can take some freedom to order the function argu-
ments dilerently in the function demnition of ‘free_falling_obj’. For example, we
could write the function as follows:

function dxdt = f r e e _ f a l l i n g _ o b j (time , g rv_cons t , s t a t e)
x1 = s t a t e (1) ;
x2 = s t a t e (2) ;
x3 = s t a t e (3) ;

dxdt = zeros (3 , 1) ;
dxdt (1) = x2 ;
dxdt (2) = grv_cons t + (x3−2) ∗ (x2 / x3) ;
dxdt (3) = −x3 + 2 ;

end

and the integration part is updated to follow the updated function demnition as
follows:

[tout , xout] = ode45 (@(time , s t a t e) f r e e _ f a l l i n g _ o b j (time , grv_cons t ,
s t a t e) , t ime_ in t e r v a l , x0) ;

The program works the same as the ones before the modimcations. Also, we
notice that we have an additional input argument, ‘grv_const’. Similarly, we could
add more input parameters if they are necessary. As long as the mrst argument,
‘time’, and the second argument, ‘state’, are indicated in the function handle, the
function can have any number of input arguments in any order to pass to the
integrator, ode45.

Once the integration is completed, the results return to two output variables,
‘tout’ and ‘xout’. Execute the command, whos, in the Matlab command prompt,
the following information is displayed:

1.2 Motivation Examples 9

>> whos
Name S i z e Byte s Cl a s s A t t r i b u t e s

f i n a l _ t im e 1x1 8 double
g rv_cons t 1x1 8 double
in i t _mass 1x1 8 double
i n i t _p o s 1x1 8 double
i n i t _ t ime 1x1 8 double
i n i t _ v e l 1x1 8 double
t ime_ in t e r v a l 1x2 16 double
t ou t 61 x1 488 double
x0 1x3 24 double
xout 61 x3 1464 double

The mrst column shows all variables created including the two output results from
the integrator. The second column shows the size of each variable: ‘tout’ is 61
rows and 1 column and ‘xout’ is 61 rows and 3 columns. Hence, each row of ‘xout’
corresponds to the time instance of the corresponding row values of ‘tout’. Why
is the number of row 61? This is determined by the integrator automatically to
adjust the integration accuracy and computation time. We can assign the number
of rows or the number of time steps explicitly, and this is covered in the later
chapters. The three columns of ‘xout’ correspond to the state, x, ẋ, and m. The
mrst column of ‘xout’ is for x, the second column of ‘xout’ is for ẋ, and the last
column of ‘xout’ is form.

By executing the following line in the Matlab command prompt, we can print
out all values of x(t) in the command window:

>> xout (: , 1)

where ‘:’ indicates all rows. If we want to see the values of x from the 11th row to
the 15th row, then

>> xout (1 1 : 1 5 , 1)

Similarly, the time history of ẋ is xout(:,2) and the time history ofm is xout(:,3).
The plot command in Matlab plots the results as follows:

plot (tout , xout (: , 1))

Before plotting each mgure, open a new mgure window using Xgure(1), Xgure(2),
and Xgure(3), respectively. The label for each axis is created using the commands
xlabel and ylabel for the horizontal and the vertical axes, respectively, where each
axis must indicate what quantity and what units are used.

10 1 Introduction

1.2.1.2 First Program in Python
Program 1.3 solves the free-falling object dilerential equation. The program is
remarkably similar to the Matlab script in Program 1.1. There are, however, many
dilerences between the two languages.

1 from numpy import l i n sp a c e
2 from s c i py . i n t e g r a t e import s o l v e _ i vp
3
4 grv_cons t = 9 . 81 # [m/ s ^2]
5 i n i t _ po s = 0 . 0 # [m]
6 i n i t _ v e l = 0 . 5 # [m/ s]
7 in i t _mass = 5 . 0 # [kg]
8
9 in i t _cond = [i n i t _pos , i n i t _ v e l , i n i t_mass]

10
11 i n i t _ t ime = 0 # [s]
12 f i n a l _ t ime = 5 .0 # [s]
13 num_data = 100
14 tou t = l i n sp a c e (i n i t_ t ime , f i na l_ t ime , num_data)
15
16
17 def f r e e _ f a l l i n g _ o b j (time , s t a t e , g rv_cons t) :
18 x1 , x2 , x3 = s t a t e
19 dxdt = [x2 ,
20 grv_cons t + (x3−2) ∗ (x2 / x3) ,
21 −x3 + 2]
22 return dxd
23
24
25 so l = s o l v e _ iv p (f r e e _ f a l l i n g _ o b j , (i n i t _ t ime , f i n a l _ t ime) ,

i n i t_cond , t _ e v a l=tout , a rg s =(g rv_cons t ,))
26 xout = so l . y
27
28 import ma tp l o t l i b . p yp lo t as p l t
29 p l t . f i g u r e (1)
30 p l t . p l o t (tout , xout [0 , :])
31 p l t . y l a b e l (’ p o s i t i o n [m] ’) ;
32 p l t . x l a b e l (’ t ime [s] ’) ;
33
34 p l t . f i g u r e (2) ;
35 p l t . p l o t (tout , xout [1 , :])
36 p l t . y l a be l (’ v e l o c i t y [m/ s] ’) ;
37 p l t . x l a b e l (’ t ime [s] ’) ;
38
39 p l t . f i g u r e (3) ;
40 p l t . p l o t (tout , xout [2 , :])
41 p l t . y l a be l (’m(t) [kg] ’) ;
42 p l t . x l a b e l (’ t ime [s] ’) ;

Program 1.3 (Python) Free-falling object

1.2 Motivation Examples 11

On lines 4 through 14, the constants are demned with the proper naming and
the units indicated in the comments. In Python, comments are placed after #.

The mrst two lines shown are not trivial to understand for the beginners of the
Python language. Python has many packages, and each package is a collection of
functions. There are several dilerent ways to load these functions and the mrst line
in the program,

1 from numpy import l i n s p ac e

shows one of the methods. from and import are the keywords in Python. It loads
the function linspace from the library called numpy. numpy is one of the scien-
timc and engineering libraries and includes many useful functions such as matrix
manipulations, and maths functions.

Numpy vs. scipy: The two packages are very similar and have many common
functions. The execution speed of numpy is faster than scipy; in general, as
numpy is written in C-language while scipy is written in Python. Scipy, how-
ever, has more specialized functions, which are not implemented in numpy.

Wemight wonder why each function ismanually loaded before it is used, unlike
in Matlab. This is one of the design principles of the Python language. If all func-
tions are pre-loaded or they are automatically searched and loaded when they are
used, then the search time or the size of the memory storing the function lists is
long or larger. Hence, it is more eocient to load the functionsmanually when they
are used.

The function linspace has three input arguments, for example, line 14 generates
an array of numerical values starting from the initial time, 0.0, to the mnal time,
5.0, whose number of elements is equal to ‘num data’, 100. Unlike the integrator
in Matlab, the Python integrator, discussed shortly later, needs the explicit time
lists as one of the input arguments.

In the second line, the numerical integrator, solve_ivp, is loaded

2 from s c i py . i n t e g r a t e import s o l v e_ i vp

This is slightly dilerent from the way to load a function shown in the mrst line.
scipy is another science and engineering function library. Some library divides the
functions in the library into several categories. integrate is one of the categories in
the scipy library. To access the functions under the category, integrate, the period is
used after the library name, i.e. scipy.integrate. The numerical integrator, solve_ivp,

12 1 Introduction

is demned in the integrate category of the scipy library. If we try to load the function
using from scipy import solve_ivp, it cannot mnd the integrator and generates an
import error.

The ODE are demned between lines 17 and 22. The mrst line of the function
demnition begins with the keyword, ‘def’, the function name, ‘free_falling_obj’,
the three input arguments, and the colon, ‘:’ as follows:

def f r e e _ f a l l i n g _ o b j (time , s t a t e , g rv_cons t) :

In general, the function to be demned could have any input arguments. The func-
tion to be passed to solve_ivp, however, must have the mrst two input arguments,
time and state, in this order. solve_ivp assumes that the mrst arguments and the sec-
ond argument of the function passed are t and x in ẋ = dx∕dt in (1.6). The main
body of the function is between the line below the function heading and the return
line. Those lines that belong to the main part of the function are indented. The
indentation in Python is not a decoration to simply improve the readability as in
many other programming languages. The indentation in Python is the way to indi-
cate which lines belong to the function body. The following is the mrst line of the
function body:

x1 , x2 , x3 = s t a t e

where ‘state’ is presumed to have three elements, and they are assigned to the three
new variables on the left-hand side of the equal sign, ‘x1’, ‘x2’, and ‘x3’. Instead of
unpacking the three elements one by one, it unpacks all the three elements in
one line.

‘dxdt’ is the list element in Python. In the list, each element is separated by the
comma, ‘,’. Finally, ‘dxdt’ becomes the return value of the function by the keyword,
return, and the function is passed to the integrator, solve_ivp.

The mrst input argument of the integrator is the function name describing the
ODE. The second one is the integration time interval. The third one is the initial
condition. ‘t eval’ is the list of time points, where the solution, x(t), is stored to the
output of the integrator. The last one is the arguments, whose name is reserved by
args. As the function ‘free_falling_obj’ has the additional input variable apart from
the time and the state, i.e. ‘grv_const’, this value must be sent to ‘solve_ivp’. args
is the input variable of ‘solve_ivp’ to pass additional input variables. ‘grv const’
is passed to the integrator by ‘arg=(grv const,)’. The data type of args is a tuple.
(1.3, 4.2, 4.3) or (1.3, 2.3) is a tuple. When there is only one element in a tuple, for
example, (1.2,), the comma at the end must not be omitted. (1.2) is interpreted as
noating-point 1.2, not a tuple. To make it a tuple, it must be (1.2,). Hence, there is
the comma after ‘grv const’ in ‘args=(grv const,)’.

1.2 Motivation Examples 13

Similar to Matlab, typing ‘whos’ at the command prompt in Python prints out
the following list to the screen:

Va r i ab l e Type Data / In fo
−−−
f i n a l _ t im e f l oa t 5 .0
f r e e _ f a l l i n g _ o b j func t i on < func t i on f r e e _ f a l l i n g _ o b j
g rv_cons t f l oa t 9 . 81
i n i t _ cond l i s t n=3
in i t _mass f l oa t 5 .0
i n i t _p o s f l oa t 0 .0
i n i t _ t ime int 0
i n i t _ v e l f l oa t 0 .5
l i n s p a c e func t i on < func t ion l i n s p ac e a t 0 x7 f
num_data int 100
p l t module <module ’ ma t p l o t l i b . pyplo< . . .
s o l OdeResult message : ’ The s o l v e r su< .
s o l v e _ i vp func t ion < func t ion so l v e_ i v p a t 0 x7 f
t ou t ndarray 100 : 100 elems , type ‘ f l o a t 6 4 ‘ ,
xout ndarray 3 x100 : 300 elems , type ‘ f l o a t 6 4

The solution of the ODE is stored in ‘sol’, whose type is OdeResult, and it includes
various information about the integration results. Typing ‘sol’ in the command
prompt and hitting enter shows what variables are in ‘sol’. We can access x(t)
through ‘sol.y’. To avoid keep adding the dot to access x(t) inside ‘sol’, create a
new variable, ‘xout’, and store ‘sol.y’ into ‘xout’. We can also see from the variable
list that the size of ‘xout’ is 3 ×100. Each of the rows corresponds to x(t), ẋ(t), and
m(t), respectively.

To plot the results, a plotting library must be loaded. matplotlib is the most
widely used plotting library in Python. More specimcally, plot functions under
matplotlib.pyplot category are the most frequently used. Load the functions as
follows:

import ma tp l o t l i b . pyp l o t

The way to access the functions under a specimc category is using the dot next to
the package name. matplotlib.pyplot means that we want to access the functions
under the sub-category called pyplot inmatplotlib instead of loading all functions
inmatplotlib. Now, we can use the plot command in pyplot as follows:

ma tp l o t l i b . pyp l o t . p l o t (tout , xout [0 , :])

This is inconvenient as the name becomes very long. To reduce the length of the
name, pyplot is loaded as follows:

import ma tp l o t l i b . pyp l o t as p l t

14 1 Introduction

After the keyword as, any convenient name we would call it could be used. By
convention or almost standard, matplotlib.pyplot is called ‘plt’. Hence, the long
name to call ‘plot’ is shortened to

p l t . p l o t (tout , xout [0 , :])

This plots x(t) vs. time t. Unlike Matlab, array indices in Python start at 0, not 1.
The mrst row of ‘xout’ is ‘xout[0,:]’, the second row of ‘xout’ is ‘xout[1,:]’, and so
forth. xlabel and ylabel commend work the same way as the ones in Matlab.

1.2.2 Ligand–Receptor Interactions

Ligand–receptor interactions are one of the most common interactions in
biomolecular systems. As shown in Figure 1.3, the ligands, L, bind to the recep-
tors, R, which spread on the cell boundary, form the ligand–receptor complex,
C, and the complex evokes further reactions through various cascade signalling
pathways inside the cell. L is produced with the rate given by a function of time,
f (t). From the control point of view, f (t) is considered as the input, R is the internal
state, and the concentration of C is the output of the ligand–receptor interactions.

The following molecular interactions describe the interactions between L, R, C,
and f (t):

R + L
kon−−−→C (1.7a)

C
kol−−−→R + L (1.7b)

R
kt−−→ % (1.7c)

C
ke−−→ % (1.7d)

f(t)
1

−−→L (1.7e)

QR
1

−−→R (1.7f)

Intra-cellular

Extra-cellular

Cell membrane

Receptor (R)

Ligand–receptor complex (C)

Ligand (L)

Figure 1.3 Ligand–receptor interactions form ligand–receptor complex.

1.2 Motivation Examples 15

where kon and kol are the reaction rates of binding or unbinding the receptor and
the ligand, R and L, respectively, to form or destroy the complex, C, the receptor
is destroyed with the rate of kt, the complex is also destroyed with the rate of ke,
f (t) is the stimulus that produces the ligand at the unit rate, and QR is the internal
receptor generation at the unit rate.

We derive a set of ODE using the molecular interactions. To this end, we intro-
duce the following two assumptions:

● All themolecules and the sources are uniformly distributed in the reaction space
● There are a suocient number of molecules for every molecular species to con-

sider concentration alone.

The mrst assumptionmakes themodelling being ODE. Otherwise, partial dileren-
tial equations with the spatial coordinates are solved. Solving partial dilerential
equations is computationally a lot more challenging than solving ODE. The sec-
ond assumption indicates that the population of eachmolecular species is far away
from 0. The randomness of molecular interactions and the integer nature of the
number of molecules are ignored in the modelling.

Molecular interactions are stochastic. The probability of the occurrence
of each reaction is calculated in stochastic simulations. We will discuss the
details of stochastic modelling and simulation in the later chapter. On the other
hand, deterministic simulations are performed by assuming a large number
of molecules. The average molecular numbers show deterministic trajectories,
where the random nuctuations are negligible.

Consider the receptor, R, which is directly involved in the three reactions. L
binds to R and becomes C in (1.7a). The concentration of R is decreased by this
reaction. The change rate is proportional to the concentrations of R and L as fol-
lows:

d[R]
dt

∝ −[R] × [L] (1.8)

where [⋅] is the concentration of the molecules. The proportional constant is given
by kon in the reaction. The concentration unit is nanomolar (nM). Molar is equal
toN∕(NAV), whereN is the number of molecules,NA is Avogadro’s number equal
to 6.022 × 1023, and V is the reaction space volume in litres.

In (1.7b), C is decomposed into R and L. The concentration of R is increased
by this reaction. The decreasing rate is proportional to the concentration of C as
follows:

d[R]
dt

∝ [C] (1.9)

where the proportional constant is kol. The receptor is destroyed by itself at the
rate of kt as follows:

d[R]
dt

∝ −[R] (1.10)

16 1 Introduction

Finally, in (1.7f), R is created at the rate of QR:

d[R]
dt

∝ [QR] (1.11)

where the proportional constant is 1.
Combining (1.8)–(1.11) as follows: Shankaran et al. (2007)

d[R]
dt

= −kon[R][L] + kol[C] − kt[R] + [QR] (1.12)

Similarly, the following dilerential equations are established for L and C:

d[L]
dt

= −kon[R][L] + kol[C] + [f (t)] (1.13a)

d[C]
dt

= kon[R][L] − kol[C] − ke[C] (1.13b)

where kol = 0.24 [1/min], kon = 0.0972 [1/(min nM)], kt = 0.02 [1/min], ke = 0.15
[1/min], and [f (t)] = 0.0 [nM/min], i.e. no external stimulation. The values are the
ones for the epidermal growth factor receptor (EGFR), which plays an important
role in understanding tumour formation and growth.

Because of QR in d[R]∕dt, R would increase to inmnity, which does not coin-
cide with the reality as there would be the possible maximumnumber of receptors
to be present in the cell. It is known that the maximum number of receptors for
the EGFR is around 100,000 (Wee and Wang, 2017, Carpenter and Cohen, 1979).
As the volume of the reaction space is given by 4 × 10−10퓁 in Shankaran et al.
(2007), the maximum concentration of R is 10, 000∕(NAV) ≈ 0.415 nM. We model
QR as follows:

[QR] =
�

0.0166 [nM/min], for [R] ≤ [R]max
0, otherwise

(1.14)

where [R]max is equal to 0.415 nM.
The initial conditions for the following simulation are set as follows: [R(0)] =

0.1 nM, [L(0)] = 0.0415 nM, and [C(0)] = 0 nM. In biomolecular network simu-
lations, we must conmrm that the molecular quantities such as the number of
molecules or the concentrations must be non-negative. [C] at the beginning of the
simulation could become negative if the time rate is negative. In the above initial
conditions, [C] is strictly increasing because d[C(0)]∕dt = kon[R(0)][L(0)] is posi-
tive at the beginning. As we can see from (1.13b), d[C]∕dt is only negative when
[C] is high enough, i.e. [C] > kon[R][L]∕(kol + ke).

The Matlab script to simulate the EGFR concentration kinetics is given in
Program 1.4.

1.2 Motivation Examples 17

1 c lear ;
2
3 i n i t _ r e c e p t o r = 0 . 1 ; % [nM]
4 i n i t _ l i g a n d = 0 . 0 4 1 5 ; %[nM]
5 in i t_comp lex = 0 . 0 ; %[kg]
6
7 i n i t _ t ime = 0 ; % [min]
8 f i n a l _ t ime = 1 80 . 0 ; % [min]
9 t ime_ in t e r v a l = [i n i t _ t ime f i n a l _ t ime] ;

10
11 kon = 0 . 0 97 2 ; % [1 / (min nM)]
12 ko f f = 0 . 2 4 ; % [1 /min]
13 kt = 0 . 0 2 ; %[1 /min]
14 ke = 0 . 1 5 ; % [1 /min]
15
16 f t = 0 . 0 ; % [nM/min]
17 QR = 0 . 0 1 66 ; % [nM/min]
18 R_max = 0 . 4 15 ; %[nM]
19
20 sim_para = [kon ko f f kt ke f t QR R_max] ;
21
22 x0 = [i n i t _ r e c e p t o r i n i t _ l i g a n d in i t_ compl ex] ;
23 [tou t , xout] = ode45 (@(time , s t a t e) RLC_k inet ic s (time , s t a t e , s im_para)

, t ime_ in te r v a l , x0) ;
24
25 f igure (1) ; c l f ;
26 subplot (3 11) ;
27 plot (tout , xout (: , 1))
28 ylabel (’ Recep tor [nM] ’) ;
29 xlabel (’ t ime [min] ’) ;
30 axis ([t im e _ in t e r v a l 0 0 . 5]) ;
31 subplot (3 12) ;
32 plot (tout , xout (: , 2))
33 ylabel (’ Ligand [nM] ’) ;
34 xlabel (’ t ime [min] ’) ;
35 axis ([t im e _ in t e r v a l 0 0 . 0 5]) ;
36 subplot (3 13) ;
37 plot (tout , xout (: , 3))
38 ylabel (’ Complex [nM] ’) ;
39 xlabel (’ t ime [min] ’) ;
40 axis ([t im e _ in t e r v a l 0 0 . 0 0 4]) ;
41
42 function dxdt = RLC_kinet i cs (time , s t a t e , sim_para)
43 R = s t a t e (1) ;
44 L = s t a t e (2) ;
45 C = s t a t e (3) ;
46
47 kon = sim_para (1) ;
48 ko f f = sim_para (2) ;
49 kt = sim_para (3) ;
50 ke = sim_para (4) ;
51 f t = sim_para (5) ;
52 QR = sim_para (6) ;

18 1 Introduction

53 R_max = sim_para (7) ;
54
55 i f R > R_max
56 QR = 0 ;
57 end
58
59 dxdt = zeros (3 , 1) ;
60 dxdt (1) = −kon∗R∗L + ko f f ∗C − kt∗R + QR;
61 dxdt (2) = −kon∗R∗L + ko f f ∗C + f t ;
62 dxdt (3) = kon∗R∗L − ko f f ∗C − ke∗C;
63 end

Program 1.4 (Matlab) EGFR receptor, ligand, and complex kinetics

Figure 1.4 shows the simulation results. The receptor concentration increases
almost linearly at the beginning and nuctuates later around the maximum con-
centration limit. The ligand–receptor reaction steadily consumes the ligand when
they bind together and become the ligand–receptor complex. The complex has a
peak concentration that occurred around 20minutes and then slowly decayed.

Figure 1.5 shows the simulation results of the Python program, Program 1.5.
Unlike the mgure commands in Matlab for Figure 1.4, plotting submgures in mat-
plotlib is not as simple as in Matlab. We need advanced features in matplotlib.
The advanced features of subplots in matplotlib are introduced in detail later in
Program 2.2. As we notice in the mgure, the mgure fonts are too small to read. How
to adjust the mgure font sizes is also discussed in Program 2.2.

0 20 40 60 80 100 120 140 160 180

0 20 40 60 80 100 120 140 160 180

0 20 40 60 80 100 120 140 160 180

Time (min)

0

0.2

0.4

R
ec

ep
to

r
(n

M
)

L
ig

an
d

(n
M

)
C

om
pl

ex
 (

nM
)

Time (min)

0

0.02

0.04

Time (min)

0

2

4
× 10–3

Figure 1.4 (Matlab) EGFR receptor, ligand, and complex time histories.

1.2 Motivation Examples 19

Program 1.5 uses two dilerent integrators, i.e. solve_ivp and odeint. The ODE
includes the discontinuous part, QR, given in (1.14). odeint cannot handle the
dilerential equations with the discontinuity, and the solutions diverge. solve_ivp
returns the correct numerical results. We recommend using solve_ivp instead
of odeint.

1 from numpy import l i n s p ac e
2 from s c i py . i n t e g r a t e import s o l v e_ i vp
3
4
5 i n i t _ r e c e p t o r = 0 . 01 # [nM]
6 i n i t _ l i g a n d = 0 .0415 # [nM]
7 in i t_comp lex = 0 . 0 #[kg]
8
9 i n i t _ t ime = 0 # [min]

10 f i n a l _ t ime = 180 .0 #[min]
11 t ime_ in t e r v a l = [i n i t _ t ime , f i na l _ t ime]
12
13 kon = 0. 0972 # [1 / (min nM)]
14 ko f f = 0 .24 # [1 /min]
15 kt = 0 . 02 # [1 /min]
16 ke = 0 . 15 # [1 /min]
17
18 f t = 0 . 0 # [nM/min]
19 QR = 0 .0166 #[nM/min]
20 R_max = 0 .415 # [nM]
21
22 sim_para = [kon , ko f f , kt , ke , f t , QR, R_max]
23
24 i n i t_ c ond = [i n i t _ r e c e p t o r , i n i t _ l i g and , in i t_comp lex]
25
26
27 num_data = int (f i n a l _ t ime ∗10)
28 t ou t = l i n sp a c e (in i t _ t ime , f i na l _ t ime , num_data)
29
30
31 def RLC_k inet ic s (time , s t a t e , sim_para) :
32 R , L , C = s t a t e
33
34 kon , ko f f , kt , ke , f t , QR, R_max = sim_para
35
36 i f R > R_max :
37 QR = 0
38
39 dxdt = [−kon∗R∗L + ko f f ∗C − kt∗R + QR,
40 −kon∗R∗L + ko f f ∗C + f t ,
41 kon∗R∗L − ko f f ∗C − ke∗C]
42 return dxdt
43
44 s o l _ou t = so l ve _ i v p (RLC_kinet ics , (i n i t _ t ime , f i n a l _ t ime) ,

in i t_cond , a r gs =(sim_para ,))
45
46 t ou t = s o l _ou t . t
47 xout = s o l _ou t . y

20 1 Introduction

48
49 from s c i py . i n t e g r a t e import ode in t
50 xou t_ode in t = ode in t (RLC_kinet ics , i ni t_cond , l i n s pa c e (in i t _ t ime ,

f i na l_ t ime , num_data) , a rg s =(sim_para ,) , t f i r s t=True)
51
52 import ma tp l o t l i b . p yp lo t as p l t
53 p l t . f i g u r e (1)
54 p l t . p l o t (tout , xout [0 , :])
55 p l t . y l a b e l (’ Receptor [nM] ’)
56 p l t . x l a b e l (’ t ime [min] ’)
57 p l t . a x i s ([0 , f i na l _ t ime , 0 , 0 . 5])
58
59 p l t . f i g u r e (2)
60 p l t . p l o t (tout , xout [1 , :])
61 p l t . y l a b e l (’ Ligand [nM] ’)
62 p l t . x l a b e l (’ t ime [min] ’)
63 p l t . a x i s ([0 , f i na l _ t ime , 0 , 0 . 0 5])
64
65 p l t . f i g u r e (3)
66 p l t . p l o t (tout , xout [2 , :])
67 p l t . y l a b e l (’ Complex [nM] ’)
68 p l t . x l a b e l (’ t ime [min] ’)
69 p l t . a x i s ([0 , f i na l _ t ime , 0 , 0 . 0 0 4])

Program 1.5 (Python) EGFR receptor, ligand, and complex kinetics

(a) plt.'gure(1)

0.5

0.4

0.3

0.2

0.1

0.0

0.05

0.04

0.03

0.02

0.01

0.00

0.0040

0.0035

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

(b) plt.'gure(2)

(c) plt.'gure(3)

0 20 40 60 80 100 120 140 160 180
Time (min)

R
ec

ep
to

r
(n

M
)

L
ig

an
d

(n
M

)

C
om

pl
ex

 (
nM

)

0 20 40 60 80 100 120 140 160 180
Time (min)

0 20 40 60 80 100 120 140 160 180
Time (min)

Figure 1.5 (Python) EGFR receptor, ligand, and complex time histories.

Exercises 21

1.3 Organization of the Book

Chapters 2 and 3 cover the dynamics, control, and estimation algorithms of
autonomous vehicles. Chapters 4 and 5 cover modelling and analysis of biological
systems. Each of the chapters provides examples and exercises. We discuss
additional readings and topics in the last chapter, Chapter 6.

Exercises

Exercise 1.1 (Matlab) Run Matlab, open the editor, type Program 1.1, save it as
an m-script, execute the m-script in the Matlab command prompt, and obtain
Figure 1.2.

Exercise 1.2 (Matlab) Using the ode45 results from Program 1.1, plot Figure 1.6
using the subplot command inMatlab. Hint: Check the help for subplot in Matlab.

Exercise 1.3 (Python) Plot Figure 1.6 using the functions undermatplotlib.pyplot
in Python.

0
0

2.5

3.5

4

5

4.5

3

50

100

150

2

Time (s)
(a) (b)

P
os

it
io

n
(m

)
m

(t
)

(k
g)

4

0 1

Time (s)
(c)

2 3 4 5

0

20

40

60

2

Time (s)

V
el

oc
ity

 (
m

/s
)

4

Figure 1.6 The time histories of (a) position (x), (b) velocity (ẋ), and (c) mass (m).

22 1 Introduction

Exercise 1.4 Derive (1.13) from the molecular interactions in (1.7).

Exercise 1.5 (Python) What is the purpose of ‘tmrst=True’ in the arguments of
odeint in Program 1.5?

Exercise 1.6 (Matlab/Python) Run the EGFR kinetic simulation 1000 times
using theMatlab or the Python script, randomly selecting the initial concentration
values in the following range: [R(0)] ∈ [0, 0.2] nM, [L(0)] ∈ [0, 0.05] nM, and
[C(0)] ∈ [0, 0.01] nM. Check if the concentrations are always positive.

Bibliography

G. Carpenter and S. Cohen. Epidermal growth factor. Annual Review of Biochemistry,
48(1):193–216, 1979. https://doi.org/10.1146/annurev.bi.48.070179.001205. PMID:
382984.

W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes 3rd
Edition: The Art of ScientiXc Computing. Cambridge University Press, 2007. ISBN
9780521880688.

Harish Shankaran, Haluk Resat, and H. Steven Wiley. Cell surface receptors for signal
transduction and ligand transport: a design principles study. PLOS Computational
Biology, 3(6):1–14, 2007. https://doi.org/10.1371/journal.pcbi.0030101.

Ping Wee and Zhixiang Wang. Epidermal growth factor receptor cell proliferation
signaling pathways. Cancers, 9(5), 2017. ISSN 2072-6694. https://doi.org/10.3390/
cancers9050052. https://www.mdpi.com/2072-6694/9/5/52.

